Binding of the Ca²⁺/calmodulin (CaM)-dependent protein kinase II (CaMKII) to the NMDA-type glutamate receptor subunit GluN2B is an important control mechanism for the regulation of synaptic strength. CaMKII binding to GluN2B and CaMKII translocation to synapses are induced by an initial Ca²⁺/CaM stimulus, which also activates the kinase. Indeed, several mechanistically different CaMKII inhibitors [tatCN21 and KN-93 (N-[2-[[[3-(4-chlorophenyl)-2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulphonamide)] and inactivating mutations (K42M, A302R, and T305/T306D) impair this interaction, suggesting that it requires CaMKII enzymatic activity. However, this study shows that two general kinase inhibitors, H7 [1-(5-isoquinolinylsulfonyl)-2-methylpiperazine] and staurosporine (Sta), which inhibit CaMKII activity by yet another mechanism, did not interfere with GluN2B binding in vitro or within cells. In contrast to a previous report, we found that Sta, like H7, inhibited CaMKII in an ATP-competitive manner. Nucleotide binding significantly enhances CaMKII/GluN2B binding in vitro, but the nucleotide competition by H7 or Sta did not prevent this effect and instead even mimicked it. H7 (700 µM) and Sta (2 µM) efficiently blocked enzymatic activity of CaMKII, both in vitro and within cells. However, neither H7 nor Sta prevented Ca²⁺-induced translocation of CaMKII to GluN2B in heterologous cells or to synapses in hippocampal neurons. Thus, activity of CaMKII (or of any other kinase inhibited by H7 or Sta) is not required for stimulation-induced GluN2B-binding or synaptic translocation of CaMKII, despite previous indication to the contrary. This shows that results with inhibitors and inhibiting mutants can be caused by structural effects independent from catalytic activity, and that detailed understanding of the mechanisms is required for their interpretation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3834147PMC
http://dx.doi.org/10.1124/mol.113.089045DOI Listing

Publication Analysis

Top Keywords

enzymatic activity
12
camkii
12
activity camkii
12
glutamate receptor
8
receptor subunit
8
subunit glun2b
8
glun2b binding
8
binding vitro
8
vitro cells
8
translocation camkii
8

Similar Publications

Identification and functional characterization of AsWRKY9, a WRKY transcription factor modulating alliin biosynthesis in garlic (Allium sativum L.).

BMC Biol

January 2025

The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.

Background: The variations in alliin content are a crucial criterion for evaluating garlic quality and is the sole precursor for allicin biosynthesis, which is significant for the growth, development, and stress response of garlic. WRKY transcription factors are essential for enhancing stress resistance by regulating the synthesis of plant secondary metabolites. However, the molecular mechanisms regulating alliin biosynthesis remain unexplored.

View Article and Find Full Text PDF

Fine tuning enzyme activity assays for monitoring the enzymatic hydrolysis of PET.

Sci Rep

January 2025

Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania.

Efficient monitoring of the enzymatic PET-hydrolysis is crucial for developing novel plastic-degrading biocatalysts. Herein, we aimed to upgrade in terms of accuracy the analytical methods useful for monitoring enzymatic PET-degradation. For the HPLC-based assessment, the incorporation of an internal standard within the analytic procedure enabled a more accurate quantification of the overall TPA content and the assessment of molar distributions and relative content of each aromatic degradation product.

View Article and Find Full Text PDF

Abiotic stresses, notably cold stress, significantly influence various aspects of plant development and reproduction. Various approaches have been proposed to counteract the adverse impacts of cold stress on plant productivity. The unique properties of nanoparticles contribute to an enhanced tolerance of plants to challenging conditions.

View Article and Find Full Text PDF

Lithocarpus litseifolius is rich in the chalcones phloridzin and trilobatin, the biosynthesis pathways of which have not been fully demonstrated. Chalcone synthase(CHS) is the first key rate-limiting enzyme in the biosynthesis of flavonoids in plants. To explore the functions of CHS gene family in chalcone synthesis of L.

View Article and Find Full Text PDF

Discovery and mechanistic exploration of promiscuous xylosyltransferase based on protein engineering.

Int J Biol Macromol

January 2025

National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.

Glycosylation is an effective means to alter the structure and properties of plant compounds, influencing the pharmacological activity of natural products (NPs) to obtain highly active NPs. In nature, glucosides are the most widely distributed, while other glycosides such as xylosides are less common and present in lower quantities. This is due to the scarcity of xylosyltransferases with substrate promiscuity in nature, and the modification of their catalytic function is also quite challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!