Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3767255PMC

Publication Analysis

Top Keywords

presence virulence
4
virulence determinants
4
determinants staphylococcus
4
staphylococcus aureus
4
aureus isolates
4
isolates nasal
4
nasal colonization
4
colonization superficial
4
superficial invasive
4
invasive infections
4

Similar Publications

This research paper presents the characterization of an enterocin-producing MF5 isolate and the determination of the in vitro antilisterial activity of enterocin produced by this isolate, named Ent-MF5. PCR-based screening for bacteriocin biosynthetic genes revealed that MF5 harbors multiple enterocin-encoding genes ( A, B, P and X), classified as class II bacteriocins and enterocin-P of (sharing up to 99% similarity at the genetic level). MF5 is sensitive to eight clinically important antibiotics and does not possess cytolysin activator -A, gelatinase -E and hyaluronidase -lA virulence genes.

View Article and Find Full Text PDF

Cross-protectivity of henipavirus soluble glycoprotein in an model of Nipah virus disease.

Front Immunol

March 2025

Specialised Microbiology and Laboratories, United Kingdom Health Security Agency (UKHSA), Salisbury, Wiltshire, United Kingdom.

Introduction: Nipah virus (NiV) is one of a group of highly pathogenic viruses classified within the Henipavirus genus. Since 2012 at least 11 new henipa-like viruses have been identified, including from new locations and reservoir hosts; the pathogenicity of these new viruses has yet to be determined, but two of them have been associated with morbidity, including fatalities.

Methods: The efficacy and cross-reactivity of two vaccine candidates derived from the soluble glycoproteins of both NiV and Hendra virus (HeV) was evaluated in our recently established hamster model.

View Article and Find Full Text PDF

Extracellular Z-DNA Enhances Cariogenicity of Biofilm.

J Dent Res

March 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Extracellular DNA (eDNA) is one of the core components of the extracellular matrix (ECM) in biofilms and provides attachment sites for microbes and other ECM components. However, little is known about the functions and underlying mechanisms of eDNA in the cariogenicity of dental plaque biofilms. A recent study demonstrated that conformational diversity of eDNA exists in biofilms, and the transition of eDNA from right-handed (B-DNA) to left-handed (Z-DNA) is associated with the structural stability and pathogenicity of biofilms.

View Article and Find Full Text PDF

The increasing consumer demand for natural and sustainable food preservation methods has highlighted the potential of lactic acid bacteria (LAB) and their bioactive metabolites, particularly bacteriocins, as effective antimicrobial agents. This study aimed to isolate and characterize strains from Algerian traditional dried figs marinated in olive oil, a nutrient-dense and underexplored food matrix. Twelve isolates were identified as using MALDI-TOF MS and 16S rRNA gene sequencing, ensuring precise taxonomic classification.

View Article and Find Full Text PDF

Insight into crRNA Processing in P42S and Application of SmutCas9 in Genome Editing.

Int J Mol Sci

February 2025

Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada.

CRISPR-Cas is an adaptive immune system found in bacteria and archaea that provides resistance against invading nucleic acids. Elements of this natural system have been harnessed to develop several genome editing tools, including CRISPR-Cas9. This technology relies on the ability of the nuclease Cas9 to cut DNA at specific locations directed by a guide RNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!