SPSSM8: an accurate approach for predicting eight-state secondary structures of proteins.

Biochimie

Department of Chemistry, Tongji University, Shanghai, PR China. Electronic address:

Published: December 2013

Protein eight-state secondary structure prediction is challenging, but is necessary to determine protein structure and function. Here, we report the development of a novel approach, SPSSM8, to predict eight-state secondary structures of proteins accurately from sequences based on the structural position-specific scoring matrix (SPSSM). The SPSSM has been successfully utilized to predict three-state secondary structures. Now we employ an eight-state SPSSM as a feature that is obtained from sequence structure alignment against a large database of 9 million sequences with putative structural information. The SPSSM8 uses a low sequence identity dataset (9062 entries) as a training set and conditional random field for the classification algorithm. The SPSSM8 achieved an average eight-state secondary structure accuracy (Q8) of 71.7% (Q3, 81.6%) for an independent testing set (463 entries), which had an improved accuracy of 10.1% and 4.6% compared with SSPro8 and CNF, respectively, and significantly improved the accuracy of eight-state secondary structure prediction. For CASP 9 dataset (92 entries) the SPSSM8 achieved a Q8 accuracy of 80.1% (Q3, 83.0%). The SPSSM8 was confirmed as an outstanding predictor for eight-state secondary structures of proteins. SPSSM8 is freely available at http://cal.tongji.edu.cn/SPSSM8.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2013.09.007DOI Listing

Publication Analysis

Top Keywords

eight-state secondary
24
secondary structures
16
structures proteins
12
secondary structure
12
structure prediction
8
spssm8 achieved
8
improved accuracy
8
spssm8
7
eight-state
7
secondary
7

Similar Publications

Secondary structure prediction is a key step in understanding protein function and biological properties and is highly important in the fields of new drug development, disease treatment, bioengineering, etc. Accurately predicting the secondary structure of proteins helps to reveal how proteins are folded and how they function in cells. The application of deep learning models in protein structure prediction is particularly important because of their ability to process complex sequence information and extract meaningful patterns and features, thus significantly improving the accuracy and efficiency of prediction.

View Article and Find Full Text PDF

Predicting the local structural features of a protein from its amino acid sequence helps its function prediction to be revealed and assists in three-dimensional structural modeling. As the sequence-structure gap increases, prediction methods have been developed to bridge this gap. Additionally, as the size of the structural database and computing power increase, the performance of these methods have also significantly improved.

View Article and Find Full Text PDF

Parkinson's disease is thought to be caused by aggregation of the intrinsically disordered protein, α-synuclein. Two amyloidogenic variants, A30P, and E46K familial mutants were investigated by wide-line H NMR spectrometry as a completion of our earlier work on wild-type and A53T α-synuclein (Bokor M. et al.

View Article and Find Full Text PDF

Secondary structure prediction (SSP) of proteins is an important structural biology technique with many applications. There have been ~300 algorithms published in the past seven decades with fierce competition in accuracy. In the first 60 years, the accuracy of three-state SSP rose from ~56% to 81%; after that, it has long stayed at 81-86%.

View Article and Find Full Text PDF

Protein secondary structure prediction (SSP) has a variety of applications; however, there has been relatively limited improvement in accuracy for years. With a vision of moving forward all related fields, we aimed to make a fundamental advance in SSP. There have been many admirable efforts made to improve the machine learning algorithm for SSP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!