Class II transactivator (CIITA) plays a critical role in controlling major histocompatibility complex (MHC) class II gene expression. In this study, two novel alternatively spliced variants of human interferon (IFN)-γ-inducible CIITA, one missing exon 7 (CIITAΔE7), the other with TAG inserted at exon 4/5 junction (CIITA-TAG), were identified and characterized. Both variants are naturally occurring since they are present in primary cells. Unlike CIITA-TAG, CIITAΔE7 is expressed more abundantly in lung adenocarcinoma A549 cells than in the non-transformed counterpart BEAS-2B cells following IFN-γ stimulation. Transfection experiments showed that CIITAΔE7 induced a markedly lower level of surface HLA-DR, -DP, -DQ expression than CIITA-TAG in A549 cells but not in BEAS-2B cells, although both variants elicited similar amounts of total DR, DP, and DQ proteins. This differential effect was correlated with, in A549 cells, decreased expression of Ii and HLA-DM genes, along with increased expression of HLA-DO genes. Ii and HLA-DM are chaperons assisting in HLA class II assembly, while HLA-DO functions to inhibit endosomal peptide loading and HLA class II membrane transport. These findings raise the possibility that CIITAΔE7 interacts with unknown cancer-associated factors to selectively modulate genes involved in the assembly and transport of HLA class II molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2013.09.066DOI Listing

Publication Analysis

Top Keywords

a549 cells
16
hla class
12
mhc class
8
class transactivator
8
lung adenocarcinoma
8
adenocarcinoma a549
8
beas-2b cells
8
class
7
cells
7
selective modulation
4

Similar Publications

Background: Novel platforms using nanotechnology-based medicines have exponentially increased in our daily lives. The unique characteristics of metal oxide and noble metals nanoparticles make them suitable for different fields including antimicrobial agents, cosmetics, textiles, wound dressings, and anticancer drug carriers.

Methods: This study focuses on the biosynthesis of small-sized SNPs using exo-metabolites of Fusarium oxysporum via bioprocess optimization using Plackett-Burman (PBD) and central composite designs (CCD) while evaluating their multifaceted bioactivities.

View Article and Find Full Text PDF

Rapamycin, a macrocyclic antibiotic derived from the actinomycetes Streptomyces hygroscopicus, is a widely used immunosuppressant and anticancer drug. Even though rapamycin is regarded as a multipotent drug acting against a broad array of anomalies and diseases, the mechanism of action of rapamycin and associated pathways have not been studied and reported clearly. Also reports on the binding of rapamycin to cancer cell receptors are limited to the serine/threonine protein kinase mTORC1.

View Article and Find Full Text PDF

Peptide-based CAR-NK cells: A novel strategy for the treatment of solid tumors.

Biochem Pharmacol

January 2025

CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China. Electronic address:

CAR-T cell therapy has been proven to be effective on hematological tumors, although graft-versus-host disease and cytokine release syndrome(CRS) limit its application to a certain extent. However, CAR-T therapy for solid tumors met challenges, among which the lack of tumor-specific antigens (TSA) and immunosuppressive tumor microenvironment (TME) are the most important factors. CAR-NK could be a good alternative to CAR-T in some ways since they can induce mild CRS and are independent of HLA-matching, but the efficacy of CAR-NKs remains limited in solid tumors.

View Article and Find Full Text PDF

Hemolysin co-regulated protein 1 (Hcp1) is a component of the cluster 1 Type VI secretion system (T6SS1) that plays a key role during the intracellular lifecycle of Burkholderia pseudomallei. Hcp1 is recognized as a promising target antigen for developing melioidosis diagnostics and vaccines. While the gene encoding Hcp1 is retained across B.

View Article and Find Full Text PDF

Formulation and characterization of inhalable dasatinib-nanoemulsion as a treatment potential against A549 and Calu-3 lung cancer cells.

Int J Health Sci (Qassim)

January 2025

Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia.

Objective: Dasatinib (DTB) is a second-generation tyrosine kinase inhibitor that was found it could help with lung cancer treatment. However, DTB has low aqueous solubility and poor bioavailability due to its incomplete absorption and high first-pass effect. The objective of this study was to improve DTB's solubility, delivery, and efficacy as a potential lung cancer treatment by developing an inhalable DTB-nanoemulsion (DNE) formulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!