Estimating the collapse of aggregated fine soil structure in a mountainous forested catchment.

J Environ Manage

Institute of Industrial Science (IIS), The University of Tokyo, Be607, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.

Published: June 2014

This paper describes the relationship of forest soil dryness and antecedent rainfall with suspended sediment (SS) yield due to extreme rainfall events and how this relationship affects the survival of forest plants. Several phenomena contribute to this relationship: increasing evaporation (amount of water vapour discharged from soil) due to increasing air temperature, decreasing moisture content in the soil, the collapse of aggregates of fine soil particles, and the resulting effects on forest plants. To clarify the relationships among climate variation, the collapse of soil particle aggregates, and rainfall-runoff processes, a numerical model was developed to reproduce such aggregate collapse in detail. The validity of the numerical model was confirmed by its application to the granitic mountainous catchment of the Nagara River basin in Japan and by comparison with observational data. The simulation suggests that important problems, such as the collapse of forest plants in response to decreases in soil moisture content and antecedent rainfall, will arise if air temperature continues to increase.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2013.08.014DOI Listing

Publication Analysis

Top Keywords

forest plants
12
fine soil
8
antecedent rainfall
8
air temperature
8
moisture content
8
numerical model
8
soil
7
estimating collapse
4
collapse aggregated
4
aggregated fine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!