The maintenance of neural circuit stability is a dynamic process that requires the plasticity of many cellular and synaptic components. By changing the excitatory/inhibitory balance, inhibitory GABAergic plasticity can regulate excitability, and contribute to neural circuit function and refinement in learning and memory. Increased inhibitory GABAergic neurotransmission has been shown in brain structures involved in the learning process. Previously, we showed that classical conditioning in which tactile stimulation of one row of vibrissae (conditioned stimulus, CS) was paired with a tail shock (unconditioned stimulus, UCS) in adult mice results in the increased density of GABAergic interneurons and increased expression of glutamic acid decarboxylase (GAD)-67 in barrels of the "trained" row cortical representation. In inhibitory neurons of the rat cortex GAD co-localizes with several proteins and peptides. We found previously that the density of the parvalbumin (GAD+/Prv+)-containing subpopulation is not changed after conditioning. In the present study, we examined GABAergic somatostatin (Som)-, calbindin (CB)- and calretinin (CR)-positive interneurons in the cortical representation of "trained" vibrissae after training. Cells showing double immunostaining for GAD/Som, GAD/CR and GAD/CB were counted in the barrels representing vibrissae activated during the training and in control, untouched rows. We found a substantial increase of GAD/Som-containing cells in the trained row representation. No changes in the density of GAD/CR or GAD/CB neurons were observed. These results suggest that Som-containing interneurons are involved in learning-induced changes in the inhibitory cortical network.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2013.09.020 | DOI Listing |
Accurate malaria diagnosis with precise identification of Plasmodium species is crucial for an effective treatment. While microscopy is still the gold standard in malaria diagnosis, it relies heavily on trained personnel. Artificial intelligence (AI) advances, particularly convolutional neural networks (CNNs), have significantly improved diagnostic capabilities and accuracy by enabling the automated analysis of medical images.
View Article and Find Full Text PDFNeuron
January 2025
Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako-shi 351-0198, Saitama, Japan; RIKEN CBS-Kao Collaboration Center (BKCC), Wako-shi 351-0198, Saitama, Japan. Electronic address:
Emotional arousal plays a critical role in determining what is remembered from experiences. It is hypothesized that activation of the amygdala by emotional stimuli enhances memory consolidation in its downstream brain regions. However, the physiological basis of the inter-regional interaction and its functions remain unclear.
View Article and Find Full Text PDFMol Psychiatry
January 2025
Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
Alzheimer's disease (AD) is characterized by memory loss and neuropsychiatric symptoms associated with cerebral amyloid-β (Aβ) and tau pathologies, but whether and how these factors differentially disrupt neural circuits remains unclear. Here, we investigated the vulnerability of memory and emotional circuits to Aβ and tau pathologies in mice expressing mutant human amyloid precursor protein (APP), Tau or both APP/Tau in excitatory neurons. APP/Tau mice develop age- and sex-dependent Aβ and phosphorylated tau pathologies, the latter exacerbated at early stages, in vulnerable brain regions.
View Article and Find Full Text PDFCell Mol Neurobiol
January 2025
Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
Neuropathic pain, a prevalent complication following spinal cord injury (SCI), severely impairs the life quality of patients. No ideal treatment exists due to incomplete knowledge on underlying neural processes. To explore the SCI-induced effect on nociceptive circuits, the protein expression of c-Fos was analyzed as an indicator of neuronal activation in a rat contusion model exhibiting below-level pain.
View Article and Find Full Text PDFFront Neurosci
January 2025
Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Beijing, China.
Objective: Repetitive and restricted behaviors (RRBs) are a core symptom of autism spectrum disorder (ASD), but effective treatment approaches are still lacking. Executive function (EF) has been identified as a promising target, as research increasingly shows a link between EF deficits and the occurrence of RRBs. However, the neural mechanisms that connect the two remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!