Dairy cows pass through a period of negative energy balance as they transition from late gestation to early lactation. Poor adaptation through this period, expressed as excessively elevated concentrations of non-esterified fatty acids (NEFAs) pre- or post-partum and elevated concentrations of β-hydroxybutyrate post-partum, increases an individual animal's risk of post-partum disease, removal from the herd, reproductive difficulty, and reduced milk production. Field studies have shown that subclinical ketosis often affects 40% of cows in a herd although the incidence can be as high as 80%. Peak incidence occurs at 5 days in milk, and cows that develop subclinical ketosis in the first week of lactation have a higher risk of negative effects and reduced milk production than cows that develop subclinical ketosis in the second week of lactation. Herds with more than a 15-20% prevalence of excessively elevated concentrations of NEFAs and β-hydroxybutyrate in early lactation have higher rates of negative subsequent events, poorer reproduction, and lower milk yield than herds with a lower prevalence of negative energy balance. This paper reviews (1) strategies for testing of energy-related metabolites, (2) consequences of poor adaptation to negative energy balance (for individual animals and for herds), (3) treatment approaches for affected cows, and (4) economic considerations for testing and treating cows with poor adaptation to negative energy balance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tvjl.2013.08.011DOI Listing

Publication Analysis

Top Keywords

negative energy
16
energy balance
16
poor adaptation
12
elevated concentrations
12
subclinical ketosis
12
non-esterified fatty
8
fatty acids
8
early lactation
8
excessively elevated
8
reduced milk
8

Similar Publications

Changes in brain mitochondrial metabolism are coincident with functional decline; however, direct links between the two have not been established. Here, we show that mitochondrial targeting via the adiponectin receptor activator AdipoRon (AR) clears neurofibrillary tangles (NFTs) and rescues neuronal tauopathy-associated defects. AR reduced levels of phospho-tau and lowered NFT burden by a mechanism involving the energy-sensing kinase AMPK and the growth-sensing kinase GSK3b.

View Article and Find Full Text PDF

Background: The reformulation of commonly consumed foods towards less sugar, fat, and salt is an important public health strategy to improve food choices of consumers and thus address the high prevalence of overweight and obesity. Front-of-pack nutrition labels like the Nutri-Score may drive reformulation and support nutritionally favourable food choices. Breakfast cereals are of special interest in that they tend to be high in sugar and are relatively often targeted at children.

View Article and Find Full Text PDF

Targeted Mitochondrial Function for Cardiac Fibrosis: an Epigenetic Perspective.

Free Radic Biol Med

January 2025

Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China 230601; Center for Scientific Research and Experiment, The Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China 230601. Electronic address:

Mitochondria, commonly referred to as "energy factories"of cells, play a crucial role in the function and survival of cardiomyocytes. However, as research on cardiac fibrosis has advanced, mitochondrial dysfunction(including changes in energy metabolism, calcium ion imbalance, increased oxidative stress, and apoptosis)is now recognized as a significant pathophysiological pathway involved in cardiac remodeling and progression, which also negatively affects the function and structure of the heart. In recent years, research focusing on targeting mitochondria has gained significant attention, offering new approaches for treating cardiac fibrosis.

View Article and Find Full Text PDF

Spiking Neural Networks (SNNs) are at the forefront of computational neuroscience, emulating the nuanced dynamics of biological systems. In the realm of SNN training methods, the conversion from ANNs to SNNs has generated significant interest due to its potential for creating energy-efficient and biologically plausible models. However, existing conversion methods often require long time-steps to ensure that the converted SNNs achieve performance comparable to the original ANNs.

View Article and Find Full Text PDF

A Stable Solid-Electrolyte Interphase Constructed by a Nucleophilic Molecule Additive for the Zn Anode with High Utilization and Efficiency.

ACS Appl Mater Interfaces

January 2025

College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, Jiangsu 215006, China.

The solid-electrolyte interphase (SEI) strongly determines the stability and reversibility of aqueous Zn-ion batteries (AZIBs). In traditional electrolytes, the nonuniform SEI layer induced by severe parasitic reactions, such as the hydrogen evolution reaction (HER), will exacerbate the side reactions on Zn anodes, thus leading to low zinc utilization ratios (ZURs). Herein, we propose to use methoxy ethylamine (MOEA) as a nucleophilic additive, which has a stronger nucleophilic characteristic than water, with the advantage of an abundance of nucleophilic atoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!