Background: The rhizome of Hydnophytum formicarum Jack., a medicinal plant known in Thai as Hua-Roi-Roo, has been used in Thai traditional herbal medicine for treatment of cancer. We assessed the ability of its ethanolic and phenolic-rich extracts and its major phenolic compound, sinapinic acid, possessing histone deacetylase (HDAC) inhibitory activity to inhibit proliferation of 5 human cancer cell lines.
Methods: HeLa cells were used to study HDAC inhibitory activity of the extracts, sinapinic acid, and a well-known HDAC inhibitor sodium butyrate. Five human cancer cell lines and one non-cancer cell line were used to study antiproliferative activities of the plant extracts, sinapinic acid and sodium butyrate, comparatively.
Results: Results indicated that ethanolic and phenolic-rich extracts of H. formicarum Jack. rhizome possessed both antiproliferative activity and HDAC inhibitory activity in HeLa cells. Sinapinic acid, despite its lower HDAC inhibitory activity than the well-known HDAC inhibitor sodium butyrate, inhibited the growth of HeLa and HT29 cells more effectively than sodium butyrate. However, sinapinic acid inhibited the growth of HCT116 and Jurkat cells less effectively than sodium butyrate. The non-cancer cell line (Vero cells) and breast cancer cell line (MCF-7 cells) appeared to be resistant to both sinapinic acid and sodium butyrate. The growth inhibitory effects of the ethanolic and phenolic-rich extracts and sinapinic acid in HeLa cells were mediated by induction of apoptosis.
Conclusions: The results of this study support the efficacy of H. formicarum Jack. rhizome ethanolic and phenolic-rich extracts for the treatment of cervical cancer, colon cancer, and T- cell leukemia in an alternative medicine. Further studies of other active ingredients from this plant are needed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3848914 | PMC |
http://dx.doi.org/10.1186/1472-6882-13-232 | DOI Listing |
Fish Physiol Biochem
January 2025
Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan, 430000, China.
Hydroxycinnamic acid derivatives are a class of phenolic acid compounds, including sinapic acid, ferulic acid, and caffeic acid, which are widely found in plants. This experiment was conducted to study the effects of hydroxycinnamic acid derivatives (sinapic acid, ferulic acid, and caffeic acid) on the growth performance, muscle physical parameters, and intestinal morphology of tilapia. A total of 320 tilapia fingerlings (9.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidhyanagri Campus, Kalina, Mumbai, 400098, India. Electronic address:
The fibrillation of α-synuclein (α-Syn) is considered a major contributor to Parkinson's disease (PD). Recent therapeutic measures have focused on inhibiting the fibrillation of α-Syn using various small molecules. We report here the effects of two different hydroxycinnamic acids; chlorogenic acid and sinapic acid on α-Syn fibrillation and have also discussed the mechanistic insights into their mode of modulation.
View Article and Find Full Text PDFMolecules
December 2024
Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland.
Cinnamic acid and its natural derivatives were primarily used in cosmetics as fragrance materials as well as skin and hair conditioners. Nowadays, not only natural but also synthetic cinnamic acid derivatives are used as active ingredients of cosmetic formulations. They still serve as fragrance ingredients but also as active ingredients supporting the treatment of selected dermatoses such as acne vulgaris, atopic dermatitis, and hyperpigmentation.
View Article and Find Full Text PDFToxicol In Vitro
March 2025
Sivas Cumhuriyet University, Vocational School of Health Services, Deparment of Therapy and Rehabilitation, Sivas, Turkey.
Sinapic acid (SA) is a polyphenol compound derived from hydroxycinnamic acid found in various foods such as cereals and vegetables and has antioxidant, anti-inflammatory and neuroprotective properties. However, its effects on glutamate-induced excitotoxicity, which is important in neurodegenerative diseases, have not been fully elucidated. This study aimed to investigate the effect of SA on glutamate excitotoxicity and the possible role of proinflammatory cytokines and the endoplasmic reticulum (ER) stress pathway.
View Article and Find Full Text PDFBiomolecules
October 2024
Shizuoka Shin-Food Development Corp., Shizuoka 422-8064, Japan.
Petit vert (scientific name: var. DC. × var.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!