IL-6 is an exercise-regulated myokine that has been suggested to increase lipolysis in fast-twitch skeletal muscle. However, it is not known if a similar effect is present in slow-twitch muscle. Furthermore, epinephrine increases IL-6 secretion from skeletal muscle, suggesting that IL-6 could play a role in mediating the lipolytic effects of catecholamines. The purpose of this study was to determine whether IL-6 stimulates skeletal muscle lipolysis in a fiber type dependent manner and is required for epinephrine-stimulated lipolysis in murine skeletal muscle. Soleus and extensor digitorum longus (EDL) muscles from male C57BL/6J wild-type and IL-6(-/-) mice were incubated with 1 μM (183 ng/ml) epinephrine or 75 ng/ml recombinant IL-6 (rIL-6) for 60 min. IL-6 treatment increased 5'-AMP-activated protein kinase and signal transducer and activator of transcription 3 phosphorylation and glycerol release in isolated EDL but not soleus muscles from C57BL/6J mice. Conversely, epinephrine increased glycerol release in soleus but not EDL muscles from C57BL/6J mice. Basal lipolysis was elevated in soleus muscle from IL-6(-/-) mice, and this was associated with increases in adipose triglyceride lipase (ATGL) and its coactivator comparative gene identification-58 (CGI-58). The increase in ATGL content does not appear to be due to a loss of IL-6's direct effects, because ex vivo treatment with IL-6 failed to alter the expression of ATGL mRNA in soleus muscle. In summary, IL-6 stimulates lipolysis in glycolytic but not oxidative muscle, whereas the opposite fiber type effect is seen with epinephrine. The absence of IL-6 indirectly upregulates lipolysis, and this is associated with increases in ATGL and its coactivator CGI-58.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3841821 | PMC |
http://dx.doi.org/10.1152/japplphysiol.00558.2013 | DOI Listing |
Hormones (Athens)
January 2025
LABIOEX-Exercise Biology Lab, Department of Health Sciences, UFSC-Federal University of Santa Catarina, Araranguá, SC, Brazil.
The endocannabinoid system (ECS), regulating such processes as energy homeostasis, inflammation, and muscle function, centers around cannabinoid receptors, including CB1. These receptors are mainly located in the central nervous system and skeletal muscles. Hyperactivity of CB1 receptors is linked to metabolic disorders and chronic inflammation, highlighting their potential as therapeutic targets for muscle hypertrophy and metabolic health.
View Article and Find Full Text PDFLasers Med Sci
January 2025
University of Zurich, Zurich, Switzerland.
The aim of this study was to compare the effectiveness of different types of low level laser treatment (LLLT) in reducing pain levels, changing oxygen saturation and bite force in patients with myofacial pain syndrome (MPS). 45 patients were randomly assigned to three groups: Group 1 (GRR laser, n = 15) received LLLT with Gallium-Aluminium-Arsenide (GaAlAs) diode laser with a wavelength of 904 nm and red laser with a wavelength of 650 nm over masseter muscle region. Group 2 (Nd: YAG laser, n = 15) were treated with Neodymium-doped Yttrium Aluminium Garnet laser with a wavelength of 1064 nm and the same protocol with Nd: YAG laser was performed in the Group 3 (placebo, n = 15) using sham device.
View Article and Find Full Text PDFPhysiol Rev
January 2025
Metabolism, Obesity, and Nutrition Lab, School of Health, Concordia University, Montréal, Québec, Canada.
Adult males and females have markedly different body composition, energy expenditure, and have different degrees of risk for metabolic diseases. A major aspect of metabolic regulation involves the appropriate storage and disposal of glucose and fatty acids. The use of sophisticated calorimetry, tracer, and imaging techniques have provided insight into the complex metabolism of these substrates showing that the regulation of these processes varies tremendously throughout the day, from the overnight fasting condition to meal ingestion, to the effects of physical activity.
View Article and Find Full Text PDFExp Brain Res
January 2025
Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
Vibrating muscles to manipulate proprioceptive input creates the sensation of an apparent change in body position. This study investigates whether vibrating the right biceps muscle has similar effects as vibrating the left posterior neck muscles. Based on previous observations, we hypothesized that both types of muscle vibration would shift the perception of healthy subjects' subjective straight-ahead (SSA) orientation in the horizontal plane to the left.
View Article and Find Full Text PDFTrop Anim Health Prod
January 2025
Department of Agricultural Biotechnology, Faculty of Agriculture, Kırşehir Ahi Evran University, 40100, Kirsehir, Türkiye.
The present study was conducted on specific skeletal muscles of six weaned male kids from each of the Angora, Hair, Honamlı, and Kilis goat breeds. The relationships between the expression of myogenic factor 5 (Myf5) and myogenic factor 6 (Myf6) genes and muscle fibre characteristics were analysed. Muscle samples from the longissimus dorsi (LD) and semitendinosus (ST) were collected from six 90-day-old weaned male kids of each breed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!