Storyline visualizations, which are useful in many applications, aim to illustrate the dynamic relationships between entities in a story. However, the growing complexity and scalability of stories pose great challenges for existing approaches. In this paper, we propose an efficient optimization approach to generating an aesthetically appealing storyline visualization, which effectively handles the hierarchical relationships between entities over time. The approach formulates the storyline layout as a novel hybrid optimization approach that combines discrete and continuous optimization. The discrete method generates an initial layout through the ordering and alignment of entities, and the continuous method optimizes the initial layout to produce the optimal one. The efficient approach makes real-time interactions (e.g., bundling and straightening) possible, thus enabling users to better understand and track how the story evolves. Experiments and case studies are conducted to demonstrate the effectiveness and usefulness of the optimization approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2013.196 | DOI Listing |
Appl Radiat Isot
January 2025
Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81300, Skudai, Johor, Malaysia.
Dealing with radioactive waste, particularly from various industrial processes, poses significant challenges. This paper explores the use of lithium aluminate borate (Li-Al-B) glass matrix as an alternative method for immobilizing radioactive waste, focusing specifically on waste generated in tin smelting industries, known as tin slag. The study primarily concentrates on transforming tin slag, a byproduct abundant in Natural Occurring Radioactive Material (NORM), into a stable and safe form for disposal.
View Article and Find Full Text PDFChaos
January 2025
Agricultural and Ecological Research Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India.
Experimental observations and field data demonstrated that predators adapt their hunting strategies in response to prey abundance. While previous studies explored the impact of predation risk on predator-prey interactions, the impact of symbiotic relationships between fear-affected prey and non-prey species on system dynamics remains unexplored. This study uses a mathematical approach to investigate how different symbiotic relationships govern system dynamics when predators adapt to prey availability.
View Article and Find Full Text PDFJMIR Aging
January 2025
Centre of Expertise in Care Innovation, Department of PXL - Healthcare, PXL University of Applied Sciences and Arts, Hasselt, Belgium.
Background: Advancements in mobile technology have paved the way for innovative interventions aimed at promoting physical activity (PA).
Objective: The main objective of this feasibility study was to assess the feasibility, usability, and acceptability of the More In Action (MIA) app, designed to promote PA among older adults. MIA offers 7 features: personalized tips, PA literacy, guided peer workouts, a community calendar, a personal activity diary, a progression monitor, and a chatbot.
J Phys Chem Lett
January 2025
Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
Functional gold nanoparticles have emerged as a cornerstone in targeted drug delivery, imaging, and biosensing. Their stability, distribution, and overall performance in biological systems are largely determined by their interactions with molecules in biological fluids as well as the biomolecular layers they acquire in complex environments. However, real-time tracking of how biomolecules attach to colloidal nanoparticles, a critical aspect for optimizing nanoparticle function, has proven to be experimentally challenging.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China.
This study combines experimental techniques and mathematical modeling to investigate the dynamics of C. elegans body-wall muscle cells. Specifically, by conducting voltage clamp and mutant experiments, we identify key ion channels, particularly the L-type voltage-gated calcium channel (EGL-19) and potassium channels (SHK-1, SLO-2), which are crucial for generating action potentials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!