Adenosine is present in rat brain synaptic vesicles.

Neuroreport

Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy.

Published: December 2013

Evidences in the central nervous system are in favor that adenosine under basal conditions is released by a direct excitation-secretion modality. However, till now, there is no direct evidence that adenosine is contained in synaptic vesicles. Eight synaptic vesicle fractions were recovered on a discontinuous sucrose gradient after ultracentrifugation of the crude synaptosomal fraction (pellet P2) of rat brain. The adenosine content in each fraction was measured by high-performance liquid chromatography coupled to a fluorescence detector (minimum sensitivity 10 femtomoles). The immunoblot analysis, to detect synaptophysin, a molecular marker for the vesicle membrane, showed that fractions from 3 to 8 were rich in synaptophysin. The sum of adenosine found in fractions 3-8 was (mean ± SEM, n = 4) 3325.6 ± 94.6 pmol/mg of tissue protein. We proved that adenosine measured in synaptic vesicle fractions was not contaminated by cytosolic adenosine, as adenosine exogenously added to the P2 preferentially distributed in fractions 1 and 2 that are synaptophysin-free and did not contaminate the vesicle pellet P3. Data provide direct demonstration that adenosine is present in rat brain synaptic vesicle fractions. This information is consistent with the notion that adenosine is stored in synaptic vesicles and is released under normoxic physiological conditions by an excitation-secretion mechanism typical of neuronal cells.

Download full-text PDF

Source
http://dx.doi.org/10.1097/WNR.0000000000000033DOI Listing

Publication Analysis

Top Keywords

rat brain
12
synaptic vesicles
12
synaptic vesicle
12
vesicle fractions
12
adenosine
10
adenosine rat
8
brain synaptic
8
synaptic
6
fractions
6
vesicle
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!