Positional effects of AAN motifs in rpoS regulation by sRNAs and Hfq.

J Mol Biol

T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA. Electronic address:

Published: January 2014

The Escherichia coli stationary phase transcription factor RpoS is translated in response to small noncoding RNAs (sRNAs), which base pair with the rpoS mRNA leader. The bacterial Sm-like protein Hfq anneals sRNAs with their mRNA targets by simultaneously binding the mRNA and sRNA. Intriguingly, Hfq is recruited to the rpoS leader via AAN motifs far upstream of the sRNA. SHAPE (selective 2'-hydroxyl acylation and primer extension) chemical footprinting showed that the rpoS leader is divided into a far upstream domain, an Hfq binding domain, and a downstream inhibitory stem-loop containing the sRNA and ribosome binding sites. To investigate how Hfq promotes sRNA-mRNA base pairing from a distance, we deleted the natural AAN Hfq binding site, and we inserted artificial AAN binding sites at various positions in the rpoS leader. All the relocated AAN motifs restored tight Hfq binding in vitro, but only insertion at the natural position restored Hfq-dependent sRNA annealing in vitro and sRNA regulation of rpoS translation in vivo. Furthermore, U-rich motifs in the downstream inhibitory domain stabilized the rpoS mRNA-Hfq complex and contributed to regulation of rpoS expression. We propose that the natural Hfq binding domain is optimal for positive regulation because it recruits Hfq to the mRNA and allows it to act on incoming sRNAs without opening the inhibitory stem-loop when sRNA is absent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3947347PMC
http://dx.doi.org/10.1016/j.jmb.2013.08.026DOI Listing

Publication Analysis

Top Keywords

hfq binding
16
aan motifs
12
rpos leader
12
rpos
9
hfq
9
binding domain
8
downstream inhibitory
8
inhibitory stem-loop
8
stem-loop srna
8
binding sites
8

Similar Publications

Unlabelled: Bacterial sRNAs together with the RNA chaperone Hfq post-transcriptionally regulate gene expression by affecting ribosome binding or mRNA stability. In the human pathogen , the causative agent of whooping cough, hundreds of sRNAs have been identified, but their roles in biology are mostly unknown. Here we characterize a Hfq-dependent sRNA (S17), whose level is dramatically higher in the virulence (Bvg ) mode.

View Article and Find Full Text PDF

Broadly conserved FlgV controls flagellar assembly and Borrelia burgdorferi dissemination in mice.

Nat Commun

November 2024

Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.

Article Synopsis
  • Flagella are crucial for the movement of pathogens like the Lyme spirochete Borrelia burgdorferi, but their production is costly and triggers immune responses, leading to complex regulatory systems controlling their gene expression.
  • The study identifies the gene bb0268 (flgV) in B. burgdorferi as a structural component of the flagella, rather than the previously thought RNA-binding protein, which plays a significant role in flagellar assembly.
  • FlgV is essential for producing functional flagella and affects the bacteria's motility and ability to infect hosts, highlighting its importance in the pathogen's life cycle, especially during infection phases.
View Article and Find Full Text PDF
Article Synopsis
  • The text discusses a Gram-negative bacterium known to cause urinary tract infections (UTIs) and catheter-associated urinary tract infections (CAUTIs), emphasizing its complex pathogenic mechanisms and various virulence factors.
  • Key virulence factors include fimbriae, flagella, urease, and others that aid in colonization, immune evasion, biofilm formation, and urinary stone development.
  • The paper reveals newly identified virulence factors related to the hydrogenase system, autotransporter proteins, and two-component systems, suggesting these could be potential targets for new treatments and vaccines against UTIs.
View Article and Find Full Text PDF

Pathogenicity Island 1 (SPI1) encodes a type three secretion system (T3SS) essential for invasion of intestinal epithelial cells. Many environmental and regulatory signals control SPI1 gene expression, but in most cases, the molecular mechanisms remain unclear. Many of these regulatory signals control SPI1 at a post-transcriptional level and we have identified a number of small RNAs (sRNAs) that control the SPI1 regulatory circuit.

View Article and Find Full Text PDF

Enteropathogenic Escherichia coli (EPEC) is a gastrointestinal pathogen that affects individuals of all age groups, with infections ranging from subclinical colonization to acute or persistent diarrhea. The bacterium's ability to cause diarrhea depends on the locus of enterocyte effacement (LEE) pathogenicity island. Although regulation of the LEE has been systematically characterized, until the last decade, studies mainly focused on its transcriptional control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!