Unlabelled: At particle therapy facilities with pencil beam scanning, the implementation of a ripple filter (RiFi) broadens the Bragg peak (BP), which leads to fewer energy steps from the accelerator required to obtain an homogeneous dose coverage of the planned target volume (PTV). At the Universitätsklinikum Gießen und Marburg, Germany, a new second generation RiFi has been developed with two-dimensional groove structures. In this work we evaluate this new RiFi design.

Methods: The Monte Carlo (MC) code SHIELD-HIT12A is used to determine the RiFi-induced inhomogeneities in the dose distribution for various ion types, initial particle energies and distances from the RiFi to the phantom surface as well as in the depth of the phantom. The beam delivery and monitor system (BAMS) used at Marburg, the Heidelberg Ionentherapiezentrum (HIT), Universitätsklinikum Heidelberg, Germany and the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany is modeled and simulated. To evaluate the PTV dose coverage performance of the new RiFi design, the heavy ion treatment planning system TRiP98 is used for dose optimization. SHIELD-HIT12A is used to prepare the facility-specific physical dose kernels needed by TRiP, and for recalculating the physical dose distribution after TRiP optimization.

Results: At short distances from the RiFi to the phantom surface fine structures in the dose distribution are observed. For various RiFis, ion types and initial particle energies the distance dmax at which maximum dose inhomogeneity occurs is found and an expression for dmax is deduced. The distance d0.01 at which the dose inhomogeneity is less than 1% is estimated and used as a threshold distance at which dose distributions are considered homogeneous. The MC data are found to agree with analytical expressions for dmax and d0.01; both are inversely related to the angular distribution. Increasing scatter from the beam delivery and monitoring system results in reduced dmax and d0.01. Furthermore, dmax and d0.01 are found to be proportional to the RiFi period λ.

Conclusion: Our findings clearly indicate that the dose inhomogeneity induced by RiFis does not add uncertainties to the dose distribution in the clinical setting. The new RiFi design can be used in treatments to obtain homogeneous PTV dose coverage with fewer energy steps while improving lateral penumbra, thereby reducing the required treatment time.

Download full-text PDF

Source
http://dx.doi.org/10.3109/0284186X.2013.832834DOI Listing

Publication Analysis

Top Keywords

dose distribution
16
dose
13
dose coverage
12
dose inhomogeneity
12
dmax d001
12
monte carlo
8
particle therapy
8
therapy facilities
8
rifi
8
fewer energy
8

Similar Publications

Long-term use of low-dose aspirin has been demonstrated to reduce cancer risk, but the duration of necessary medication use remains uncertain. This study aimed to investigate the long-term chemoprotective effect of aspirin among the Chinese population. This population-based study included all aspirin users between 2000 and 2019.

View Article and Find Full Text PDF

Multi-layer shielding optimization of a high activity Am-Be mixed field irradiation facility.

Appl Radiat Isot

January 2025

Experimental Nuclear Physics Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Egypt; Cyclotron Facility, Egyptian Atomic Energy Authority, Egypt.

Neutron and gamma-ray shielding design for a 30Ci (1.11TBq) Am-Be irradiation facility is studied using MCNP5 Monte Carlo simulation code. The study focuses on the optimization of the shielding layers of the previously planned neutron irradiation facility.

View Article and Find Full Text PDF

Bangladesh completed a primary series of COVID-19 vaccinations for about 86 individuals per 100 population as of 5 July 2023. However, ensuring higher coverage in vulnerable areas is challenging. We report on the COVID-19 vaccine uptake and associated factors among adults in two vulnerable areas in Bangladesh.

View Article and Find Full Text PDF

Determinants of COVID-19 vaccination coverage in European and Organisation for Economic Co-operation and Development (OECD) countries.

Front Public Health

January 2025

Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.

Introduction: In relatively wealthy countries, substantial between-country variability in COVID-19 vaccination coverage occurred. We aimed to identify influential national-level determinants of COVID-19 vaccine uptake at different COVID-19 pandemic stages in such countries.

Methods: We considered over 50 macro-level demographic, healthcare resource, disease burden, political, socio-economic, labor, cultural, life-style indicators as explanatory factors and coverage with at least one dose by June 2021, completed initial vaccination protocols by December 2021, and booster doses by June 2022 as outcomes.

View Article and Find Full Text PDF

Background: 7-Hydroxymethotrexate (7-OHMTX) is the main metabolite in plasma following high-dose MTX (HD-MTX), which may result in activity and toxicity of the MTX. Moreover, 7-OHMTX could produce crystalline-like deposits within the renal tubules under acidic conditions or induce renal inflammation, oxidative stress, and cell apoptosis through various signaling pathways, ultimately leading to kidney damage. The objectives of this study were thus to explore the exposure-safety relationship of two compounds and search the most reliable marker for predicting HDMTX nephrotoxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!