Together with the sweet principle component glycyphyllin A (3), seven phenolic compounds including two new dihydrochalcone rhamnopyranosides, glycyphyllin B (1) and glycyphyllin C (2), and five known flavonoids, catechin (4), kaempferol-3-O-β-D-glucopyranoside (5), quercetin-3-O-β-D-glucopyranoside (6), kaempferol-3-O-β-neohesperidoside (7), and 2R,3R-dihydrokaempferol-3-O-β-D-glucopyranoside (8), have been isolated from the ethanolic extract of the leaves of Smilax glyciphylla for the first time. The structures of these compounds were characterized by spectroscopic methods including UV, MS, and 1D and 2D NMR. In vitro antioxidant capacity tests employing FRAP and DPPH assays indicated that 1, 4, and 6 exhibited potent antioxidant activity and are the key phenolics responsible for the antioxidant activity of the leaf extract of S. glyciphylla.

Download full-text PDF

Source
http://dx.doi.org/10.1021/np4005163DOI Listing

Publication Analysis

Top Keywords

antioxidant activity
12
smilax glyciphylla
8
examination phenolic
4
phenolic profile
4
antioxidant
4
profile antioxidant
4
activity leaves
4
leaves australian
4
australian native
4
native plant
4

Similar Publications

The increasing global prevalence of Alzheimer's disease necessitates the development of novel therapeutic approaches. Neurodegenerative diseases are associated with increased oxidative stress and levels of cholinesterase enzymes. Hence, the development of cholinesterase inhibitors and antioxidants may provide neuroprotective effects.

View Article and Find Full Text PDF

Aba-induced active stomatal closure in bulb scales of Lanzhou lily.

Plant Signal Behav

December 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China.

Abscisic acid (ABA) mediated stomatal closure is a highly effective mode of active stomatal regulation under drought stress. Previous studies on stomatal regulation have primarily focused on the leaves of vascular plants, while research on the stomatal behavior of bulbous plants remains unknown. In addition, ABA-induced stomatal regulation in bulbs has yet to be explored.

View Article and Find Full Text PDF

At the present stage, great progress has been achieved in understanding the mechanisms of the development of cerebral ischemia. This became possible due to the achievements of theoretical disciplines, in connection with which the general biological approach was formed in the study of pathogenesis of acute and chronic cerebrovascular disorders (CVD). The discovery of pathways of free radical oxidation in cerebral ischemia made it possible to substantiate and develop therapeutic strategies using drugs with antioxidant and neuroprotective activity.

View Article and Find Full Text PDF

Chronic cerebral ischemia (CCI) is one of the most common forms of cerebrovascular disease, which affects a significant number of patients, often leading to disability, cognitive impairment and dementia. The analysis of modern data on the pathogenesis and risk factors for the development of CCI, as well as on the mechanisms of action of Mexidol on various links in the pathogenesis of CCI. A systematic search was conducted in the PubMed, MEDLINE and Google Scholar databases, on Russian and English-language sites with open access publications on the problem of CCI and on the drug Mexidol in the period from 2014 to 2024.

View Article and Find Full Text PDF

A and Extract Blend Attenuates Muscle Atrophy by Regulating Protein Metabolism and Antioxidant Activity.

J Med Food

December 2024

Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Republic of Korea.

Here, we investigated whether a mixture of and (1:3, KGC01CE) could suppress muscle atrophy in HO-induced C2C12 cells and dexamethasone-injected mice. Our results revealed that KGC01CE effectively safeguarded against HO-induced muscle atrophy in C2C12 cells compared with the same mixture at other ratios. We demonstrated that dexamethasone elicited oxidative stress in muscle tissue and decreased the grip strength and cross-sectional areas of muscle fibers; however, oral administration of KGC01CE (1:3) suppressed these dexamethasone-induced changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!