The recent strategy to apply chemical reactions to address fundamental biological questions has led to the emergence of entirely new conjugation reactions that are fast and irreversible, yet so mild and selective that they can be performed even in living cells or organisms. These so-called bioorthogonal reactions open novel avenues, not only in chemical biology research, but also in many other life sciences applications, including the modulation of biopharmaceuticals by site-specific modification approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ddtec.2012.10.011 | DOI Listing |
Org Lett
January 2025
School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India.
Herein, we report a formal C-C bond azidation and cyanation of unactivated aliphatic ketones using commercially available tosyl azide and cyanide, respectively. A visible-light-mediated organophotocatalyst enables radical azidation and cyanation of ketone-derived pro-aromatic dihydroquinazolinones (under mostly redox-neutral conditions) as supported by preliminary mechanistic studies. These metal-free and scalable protocols can be used to synthesize tertiary, secondary, and primary alkyl azides and nitriles with good functional group tolerance and postsynthetic diversification of the azide group, including bioconjugation.
View Article and Find Full Text PDFBeilstein J Org Chem
December 2024
Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554, bivio per Sestu, 09042 Monserrato (CA), Italy.
The rising popularity of bioconjugate therapeutics has led to growing interest in late-stage functionalization (LSF) of peptide scaffolds. α,β-Unsaturated amino acids like dehydroalanine (Dha) derivatives have emerged as particularly useful structures, as the electron-deficient olefin moiety can engage in late-stage functionalization reactions, like a Giese-type reaction. Cheap and widely available building blocks like organohalides can be converted into alkyl radicals by means of photoinduced silane-mediated halogen-atom transfer (XAT) to offer a mild and straightforward methodology of alkylation.
View Article and Find Full Text PDFOrg Lett
December 2024
Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, China.
Beilstein J Org Chem
September 2024
Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
Strain-promoted azide-alkyne cycloaddition (SpAAC) is a powerful tool in the field of bioconjugation and materials research. We previously reported a regioselective double addition of organic azides to octadehydrodibenzo[12]annulene derivatives with electron-rich alkyloxy substituents. In order to increase the reaction rate, electron-withdrawing substituents were introduced into octadehydrodibenzo[12]annulene.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2024
Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, B.C., Canada.
Sulfilimines, as potential aza-isosteres of sulfoxides, are valued as building blocks, auxiliaries, ligands, bioconjugation handles, and as precursors to versatile S(VI) scaffolds including sulfoximines and sulfondiimines. Here, we report a thioether imination methodology that exploits O-(diphenylphosphinyl)hydroxyl amine (DPPH). Under mild, metal-free, and biomolecule-compatible conditions, DPPH enables late-stage S-imination on peptides, natural products, and a clinically trialled drug, and shows both excellent chemoselectivity and broad functional group tolerance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!