Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring.

Semin Cutan Med Surg

Department of Dermatology, Harvard Medical School, BAR 414 Wellman, Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114, USA.

Published: March 2013

Low-level laser (light) therapy (LLLT) is a fast-growing technology used to treat a multitude of conditions that require stimulation of healing, relief of pain and inflammation, and restoration of function. Although skin is naturally exposed to light more than any other organ, it still responds well to red and near-infrared wavelengths. The photons are absorbed by mitochondrial chromophores in skin cells. Consequently, electron transport, adenosine triphosphate nitric oxide release, blood flow, reactive oxygen species increase, and diverse signaling pathways are activated. Stem cells can be activated, allowing increased tissue repair and healing. In dermatology, LLLT has beneficial effects on wrinkles, acne scars, hypertrophic scars, and healing of burns. LLLT can reduce UV damage both as a treatment and as a prophylactic measure. In pigmentary disorders such as vitiligo, LLLT can increase pigmentation by stimulating melanocyte proliferation and reduce depigmentation by inhibiting autoimmunity. Inflammatory diseases such as psoriasis and acne can also be managed. The noninvasive nature and almost complete absence of side effects encourage further testing in dermatology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126803PMC

Publication Analysis

Top Keywords

low-level laser
8
laser light
8
light therapy
8
therapy lllt
8
lllt
5
lllt skin
4
skin stimulating
4
healing
4
stimulating healing
4
healing restoring
4

Similar Publications

To investigate the efficacy and safety of picosecond (PS) and nanosecond (NS) 1064-nm neodymium-doped yttrium aluminum garnet (Nd: YAG) laser in treating Café-au-lait macules (CALMs). We retrospectively analyzed the medical records of patients with CALMs, who were treated with PS or NS 1064-nm lasers from January 2020 to January 2022. The efficacy was determined based on the before and after pictures by two independent investigators.

View Article and Find Full Text PDF

Purpose: Photobiomodulation (PBM) is a non-invasive therapeutic procedure that consists of irradiating a local area of the skin with red and near-infrared lasers or light emitting diodes (LEDs). Local PBM has been studied as a method to improve exercise performance and recovery. This review aims to evaluate the efficacy of whole-body PBM for exercise performance and recovery, comparing its findings to the established effects of localized PBM.

View Article and Find Full Text PDF

A combination of gold nanoparticles and laser photobiomodulation to boost antioxidant defenses in the recovery of muscle injuries caused by Bothrops jararaca venom.

Lasers Med Sci

January 2025

Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.

Unlabelled: This study aimed to evaluate gold nanoparticles (GNPs) and photobiomodulation (PBM), associated with antibothropic serum (AS), to treat a muscle lesion induced by Bothrops jararaca venom.

Methods: 108 Swiss male mice were used, divided into nine groups (n = 12) with different combinations of treatments. Animals were inoculated with 250 µg of B.

View Article and Find Full Text PDF

Riga-Fede disease (RFD) is a rare, benign condition marked by traumatic ulceration on the tongue's ventral side in infants. It arises from friction between the tongue and lower incisors during sucking, potentially worsening into a keratinized lesion if the cause is not addressed. This report details the case of a 1-year-6-month-old male with hydrocephalus, cleft palate, corpus callosum dysgenesis, neuropsychomotor developmental delay, and tracheostomy and gastrostomy needs.

View Article and Find Full Text PDF

: The aim of this study was to investigate the effect of substrate - polycaprolactone (PCL)-based porous membrane modified with rosmarinic acid (RA), (PCL-RA) and to determine the optimal values of low field laser irradiation (LLLT) as stimulators of biological response of RAW 264.7 macrophages. : The porous polymer membrane was obtained by the phase inversion method, the addition of rosmarinic acid was 1%wt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!