Metabolic endotoxemia triggers inflammation, targets cells from the stroma-vascular fraction of adipose depots, and metabolic disease. To identify these cells we here infused mice with lipopolysaccharides and showed by FACS analyses and BrdU staining that the number of small subcutaneous adipocytes, preadipocytes and macrophages increased in wild type but not in CD14-knockout (KO) mice. This mechanism was direct since in CD14KO mice grafted subcutaneously and simultaneously with fat pads from CD14KO and wild-type mice the concentration of cytokine mRNA was increased in the wild-type fat pad only. Conversely, the mRNA concentration of genes involved in glucose and lipid metabolism and the number of large adipocytes was reduced. Eventually, a pretreatment with LPS enhanced HFD-induced metabolic diseases. Altogether, these results show that metabolic endotoxemia increases the proliferation of preadipocytes through a CD14-dependent mechanism directly, without recruiting CD14-positive cells from non-adipose depot origin. This mechanism could precede the onset of metabolic diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773833PMC
http://dx.doi.org/10.1016/j.molmet.2013.06.005DOI Listing

Publication Analysis

Top Keywords

metabolic endotoxemia
12
metabolic diseases
12
increases proliferation
8
onset metabolic
8
cd14-dependent mechanism
8
metabolic
7
endotoxemia directly
4
directly increases
4
proliferation adipocyte
4
adipocyte precursors
4

Similar Publications

Pericytes mediate neuroinflammation via Fli-1 in endotoxemia and sepsis in mice.

Inflamm Res

January 2025

Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA.

Background: Sepsis-associated encephalopathy (SAE) often results from neuroinflammation. Recent studies have shown that brain platelet-derived growth factor receptor β (PDGFRβ) cells, including pericytes, may act as early sensors of infection by secreting monocyte chemoattractant protein-1 (MCP-1), which transmits inflammatory signals to the central nervous system. The erythroblast transformation-specific (ETS) transcription factor Friend leukemia virus integration 1 (Fli-1) plays a critical role in inflammation by regulating the expression of key cytokines, including MCP-1.

View Article and Find Full Text PDF

Cirrhotic cardiomyopathy (CCM) is a diagnostic entity defined as cardiac dysfunction (diastolic and/or systolic) in patients with liver cirrhosis, in the absence of overt cardiac disorder. Pathogenically, CCM stems from a combination of systemic and local hepatic factors that, through hemodynamic and neurohormonal changes, affect the balance of cardiac function and lead to its remodeling. Vascular changes in cirrhosis, mostly driven by portal hypertension, splanchnic vasodilatation, and increased cardiac output alongside maladaptively upregulated feedback systems, lead to fluid accumulation, venostasis, and cardiac dysfunction.

View Article and Find Full Text PDF

Background: Microcirculation is the essential link between macrocirculation and cellular metabolism.

Objectives: To test our hypotheses that microcirculation variables will show a heterogeneous flow pattern during experimental endotoxaemia, and that fluid therapy and noradrenaline (NA) infusion will normalise altered microcirculation variables.

Study Design: In vivo experiments.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common multi-factorial liver disease, and its incidence is gradually increasing worldwide. Many reports have revealed that intestinal flora plays a crucial role for the occurrence and development of MASLD, through mechanisms such as flora translocation, endogenous ethanol production, dysregulation of choline metabolism and bile acid, and endotoxemia. Here, we review the relationship between intestinal flora and MASLD, as well as interventions for MASLD, such as prebiotics, probiotics, synbiotics, and intestinal flora transplantation.

View Article and Find Full Text PDF

Background: Phospholipid transfer protein (PLTP), a glycoprotein widely expressed in the body, is primarily involved in plasma lipoprotein metabolism. Previous research has demonstrated that PLTP can exert anti-inflammatory effects and improve individual survival in patients with sepsis and endotoxemia by neutralizing LPS and facilitating LPS clearance. However, the role of PLTP in sepsis-associated acute kidney injury (SA-AKI) and the specific mechanism of its protective effects are unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!