In addition to TCR signaling, the activation and proliferation of naive T cells require CD28-mediated co-stimulation. Once engaged, CD28 is phosphorylated and can then activate signaling pathways by recruiting molecules to its YMNM motif and two PxxP motifs. In this study, we analyzed the relationship between tyrosine phosphorylation and the co-stimulatory function of CD28 in murine primary CD4(+) T cells. Tyrosine phosphorylation is decreased in CD28 where the N-terminal PxxP motif is mutated (nPA). In cells expressing nPA, activation of Akt and functional co-stimulation were decreased. In contrast, where the C-terminal PxxP motif is mutated, tyrosine phosphorylation and activation of the ERK, Akt and NF-κB were intact, but proliferation and IL-2 production were decreased. Using the Y(189) to F mutant, we also demonstrated that in naive CD4(+) T cells, tyrosine at position 189 in the YMNM motif is critical for both tyrosine phosphorylation and the functional co-stimulatory effects of CD28. This mutation did not affect unfractionated T-cell populations. Overall, our data suggest that CD28 signaling uses tyrosine phosphorylation-dependent and phosphorylation-independent pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1093/intimm/dxt028DOI Listing

Publication Analysis

Top Keywords

tyrosine phosphorylation
16
cd4+ cells
12
cd28 signaling
8
primary cd4+
8
tyrosine phosphorylation-dependent
8
phosphorylation-dependent phosphorylation-independent
8
phosphorylation-independent pathways
8
ymnm motif
8
cells tyrosine
8
pxxp motif
8

Similar Publications

Background: Mutations in the structural domain of the epidermal growth factor receptor (EGFR) kinase represent a critical pathogenetic factor in non-small cell lung cancer (NSCLC). Small-molecule EGFR-tyrosine kinase inhibitors (TKIs) serve as first-line therapeutic agents for the treatment of EGFR-mutated NSCLC. But the resistance mutations of EGFR restrict the clinical application of EGFR-TKIs.

View Article and Find Full Text PDF

Role of PI3K/AKT signaling pathway during capacitation.

Theriogenology

January 2025

Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, 37224, Republic of Korea. Electronic address:

Spermatozoa must undergo a complex maturation process within the female genital tract known as capacitation. This process entails the phosphorylation or dephosphorylation of various proteins, and multiple signaling pathways are recognized to play a role. The present study aims to identify alterations in the expression of proteins related to the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT) signaling pathway and assess sperm functions during capacitation.

View Article and Find Full Text PDF

DYRK1A-TGF-β signaling axis determines sensitivity to OXPHOS inhibition in hepatocellular carcinoma.

Dev Cell

January 2025

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:

Intervening in mitochondrial oxidative phosphorylation (OXPHOS) has emerged as a potential therapeutic strategy for certain types of cancers. Employing kinome-based CRISPR screen, we find that knockout of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) synergizes with OXPHOS inhibitor IACS-010759 in liver cancer cells. Targeting DYRK1A combined with OXPHOS inhibitors activates TGF-β signaling, which is crucial for OXPHOS-inhibition-triggered cell death.

View Article and Find Full Text PDF

Targeting Shp2 as a therapeutic strategy for neurodegenerative diseases.

Transl Psychiatry

January 2025

Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, PR China.

The incidence of neurodegenerative diseases (NDs) has increased recently. However, most of the current governance strategies are palliative and lack effective therapeutic drugs. Therefore, elucidating the pathological mechanism of NDs is the key to the development of targeted drugs.

View Article and Find Full Text PDF

The sodium phosphate cotransporter-2A (NPT2A) mediates basal and parathyroid hormone (PTH)- and fibroblast growth factor-23 (FGF23)-regulated phosphate transport in proximal tubule cells of the kidney. Both basal and hormone-sensitive transport require sodium hydrogen exchanger regulatory factor-1 (NHERF1), a scaffold protein with tandem PDZ domains, PDZ1 and PDZ2. NPT2A binds to PDZ1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!