Aims: To determine whether post-infarction LV dysfunction is due to low energy availability or inefficient energy utilization, we compared energy metabolism in normal and failing hearts. We also studied whether improved coupling of glycolysis and glucose oxidation by knockout of malonyl CoA decarboxylase (MCD-KO) would have beneficial effects on LV function and efficiency.
Methods And Results: Male C57BL/6 mice were subjected to coronary artery ligation (CAL) or sham operation (SHAM) procedure. After 4 weeks and echocardiographic evaluation, hearts were perfused (working mode) to measure LV function and rates of energy metabolism. Similar protocols using MCD-KO mice and wild-type (WT) littermates were used to assess consequences of MCD deficiency. Relative to SHAM, CAL hearts had impaired LV function [lower % ejection fraction (%EF, 49%) and LV work (46%)]. CAL hearts had higher rates (expressed per LV work) of glycolysis, glucose oxidation, and proton production. LV work per ATP production from exogenous sources was lower in CAL hearts, indicative of inefficient exogenous energy substrate utilization. Fatty acid oxidation rates, ATP, creatine, and creatine phosphate contents were unaffected. Utilization of endogenous substrates, triacylglycerol and glycogen, was similar in CAL and SHAM hearts. MCD-KO CAL hearts had 31% higher %EF compared with that of WT-CAL, and lower rates of glycolysis, glucose oxidation, proton production, and ATP production, indicative of improved efficiency.
Conclusion: CAL hearts are inefficient in utilizing energy for mechanical function, possibly due to higher proton production arising from mismatched glycolysis and glucose oxidation. MCD deficiency lessens proton production, LV dysfunction, and inefficiency of exogenous energy substrate utilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cvr/cvt216 | DOI Listing |
Nat Commun
December 2024
IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy.
Acute myeloid leukemia (AML) is an aggressive disease with a high relapse rate. In this study, we map the metabolic profile of CD34(CD38) AML cells and the extracellular vesicle signatures in circulation from AML patients at diagnosis. CD34 AML cells display high antioxidant glutathione levels and enhanced mitochondrial functionality, both associated with poor clinical outcomes.
View Article and Find Full Text PDFRedox Rep
December 2025
Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.
Objectives: Bone remodeling imbalance contributes to osteoporosis. Though current medications enhance osteoblast involvement in bone formation, the underlying pathways remain unclear. This study was aimed to explore the pathways involved in bone formation by osteoblasts, we investigate the protective role of glycolysis and N6-methyladenosine methylation (m6A) against oxidative stress-induced impairment of osteogenesis in MC3T3-E1 cells.
View Article and Find Full Text PDFFront Immunol
December 2024
Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
The COVID-19 pandemic has significantly impacted global health, especially in vulnerable populations like kidney transplant recipients (KTRs). Recently, mass spectrometry-based proteomics has emerged as a powerful tool to shed light on a broad spectrum of dysregulated biological processes in KTRs with COVID-19. In this study, we prospectively collected blood samples from 17 COVID-19-positive KTRs and 10 non-infected KTRs between May and September 2020.
View Article and Find Full Text PDFCytojournal
November 2024
Department of Pathology, Xingtai Medical College, Xingtai, China.
Objective: Oral squamous cell carcinoma (OSCC) is a common malignant tumor worldwide. Surfeit 4 (SURF4) is a member of the surfeit gene family and plays a regulatory role in various cellular processes, such as protein transport and lipid metabolism. Therefore, this study aims to investigate the regulatory role and mechanisms of SURF4 in OSCC.
View Article and Find Full Text PDFOncol Res
December 2024
Department of Respiratory Medicine, Shandong Provincial Third Hospital, Jinan, 250010, China.
Background: To investigate SCL/TAL 1 interrupting locus ()'s role and prognostic significance in lung adenocarcinoma (LUAD) progression, we examined and E2 promoter binding factor 1 (E2F1) expression and their impacts on LUAD prognosis using Gene Expression Profiling Interactive Analysis (GEPIA).
Methods: Functional assays including CCK-8, wound-healing, 5-ethynyl-2-deoxyuridine (EdU), Transwell assays, and flow cytometry, elucidated and E2F1's effects on cell viability, proliferation, apoptosis, and migration. Gene set enrichment analysis (GSEA) identified potential pathways, while metabolic assays assessed glucose metabolism.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!