Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Injection of fluorochromes such as Alexa Fluor(®) 568 into single cells in brain slices reveals a network of dye-coupled cells to be associated with the central complex. Subsequent immunolabeling shows these cells to be repo positive/glutamine synthetase positive/horseradish peroxidase negative, thus identifying them as astrocyte-like glia. Dye coupling fails in the presence of n-heptanol indicating that dye spreads from cell to cell via gap junctions. A cellular network of dye-coupled, astrocyte-like, glia surrounds and infiltrates developing central complex neuropils. Intracellular dye injection techniques complement current molecular approaches in analyzing the functional properties of such networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-62703-655-9_7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!