A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The role of GluA1 in ocular dominance plasticity in the mouse visual cortex. | LitMetric

The role of GluA1 in ocular dominance plasticity in the mouse visual cortex.

J Neurosci

School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom.

Published: September 2013

Ocular dominance plasticity is a widely studied model of experience-dependent cortical plasticity. It has been shown that potentiation of open eye responses resulting from monocular deprivation relies on a homeostatic response to loss of input from the closed eye, but the mechanisms by which this occurs are not fully understood. The role of GluA1 in the homeostatic component of ocular dominance (OD) plasticity has not so far been tested. In this study, we tested the idea that the GluA1 subunit of the AMPA receptor is necessary for open eye potentiation. We found that open eye potentiation did not occur in GluA1 knock-out (GluA1(-/-)) mice but did occur in wild-type littermates when monocular deprivation was imposed during the critical period. We also found that depression of the closed eye response that normally occurs in the monocular as well as binocular zone is delayed, but only in the monocular zone in GluA1(-/-) mice and only in a background strain we have previously shown lacks synaptic scaling (C57BL/6OlaHsd). In adult mice, we found that OD plasticity and facilitation of OD plasticity by prior monocular experience were both present in GluA1(-/-) mice, suggesting that the GluA1-dependent mechanisms only operate during the critical period.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618404PMC
http://dx.doi.org/10.1523/JNEUROSCI.2078-13.2013DOI Listing

Publication Analysis

Top Keywords

ocular dominance
12
dominance plasticity
12
open eye
12
glua1-/- mice
12
role glua1
8
potentiation open
8
monocular deprivation
8
closed eye
8
eye potentiation
8
critical period
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!