A novel cytidine analog fluorocyclopentenylcytosine (RX-3117; TV-1360) was characterized for its cytotoxicity in a 59-cell line panel and further characterized for cytotoxicity, metabolism and mechanism of action in 15 additional cancer cell lines, including gemcitabine-resistant variants. In both panels sensitivity varied 75-fold (IC50: 0.4- > 30 μM RX-3117). RX-3117 showed a different sensitivity profile compared to cyclopentenyl-cytosine (CPEC) and azacytidine, substrates for uridine-cytidine-kinase (UCK). Dipyridamole, an inhibitor of the equilibrative-nucleoside-transporter protected against RX-3117. Uridine and cytidine protected against RX-3117, but deoxycytidine (substrate for deoxycytidine-kinase [dCK]) not, although it protected against gemcitabine, demonstrating that RX-3117 is a substrate for UCK and not for dCK. UCK activity was abundant in all cell lines, including the gemcitabine-resistant variants. RX-3117 was a very poor substrate for cytidine deaminase (66,000-fold less than gemcitabine). RX-3117 was rapidly metabolised to its nucleotides predominantly the triphosphate, which was highest in the most sensitive cells (U937, A2780) and lowest in the least sensitive (CCRF-CEM). RX-3117 did not significantly affect cytidine and uridine nucleotide pools. Incorporation of RX-3117 into RNA and DNA was higher in sensitive A2780 and low in insensitive SW1573 cells. In sensitive U937 cells 1 μM RX-3117 resulted in 90% inhibition of RNA synthesis but 100 μM RX-3117 was required in A2780 and CCRF-CEM cells. RX-3117 at IC50 values did not affect the integrity of RNA. DNA synthesis was completely inhibited in sensitive U937 cells at 1 μM, but in other cells even higher concentrations only resulted in a partial inhibition. At IC50 values RX-3117 downregulated the expression of DNA methyltransferase. In conclusion, RX-3117 showed a completely different sensitivity profile compared to gemcitabine and CPEC, its uptake is transporter dependent and is activated by UCK. RX-3117 is incorporated into RNA and DNA, did not affect RNA integrity, depleted DNA methyltransferase and inhibited RNA and DNA synthesis. Nucleotide formation is related with sensitivity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10637-013-0025-xDOI Listing

Publication Analysis

Top Keywords

rx-3117
17
rna dna
16
sensitivity profile
12
μm rx-3117
12
metabolism mechanism
8
mechanism action
8
fluorocyclopentenylcytosine rx-3117
8
rx-3117 tv-1360
8
characterized cytotoxicity
8
cell lines
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!