The spin crossover behavior of the two [Fe(mtz)6](2+) complexes occupying different lattice sites in Fe(mtz)6(BF4)2 is addressed by combining quantum chemical calculations with a careful analysis of the crystal structure. It is first established from the calculations that the energy difference between high spin and low spin states depends on the orientation of the tetrazole ligands; small rotation angles favor the low spin state, while for angles larger than ∼20° the high spin state is more stable. The crystal structure shows that the two complexes have different average rotation angles of the ligands. It is larger for the site that remains HS down to low temperatures and smaller for the site that shows spin crossover to LS. The origin of the different rotation angles is found to be determined by a subtle interplay amongst steric repulsion between the ligands, HF interactions between the complex and the counterions, and intersite interactions involving NH contacts and π-π interactions between the N[double bond, length as m-dash]N double bonds of the tetrazole rings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3dt52027g | DOI Listing |
Nanomaterials (Basel)
January 2025
Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse (UPS, INP), 31077 Toulouse, France.
Spin crossover (SCO) iron (II) coordination compounds in the form of nanohybrid SCO@SiO particles were prepared using a reverse micelles technique based on the TritonX-100/cyclohexane/water ternary system. Tetraethyl orthosilicate (TEOS) acts as precursor of both the SiF counter-anion and SiO to obtain Fe(NHtrz)(BF)(SiF)@SiO nanoparticles with different sizes and morphologies while modifying the TEOS concentration and reaction time. The adjustable mixed-anion strategy leads to a range of quite scarce abrupt spin crossover behaviors with hysteresis just above room temperature (ca.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
An modelling workflow is used to predict the thermoelectric properties and figure of merit of the lanthanide cobalates LaCoO, PrCoO and NdCoO in the orthorhombic phase with the low-spin magnetic configuration. The LnCoO show significantly lower lattice thermal conductivity than the widely-studied SrTiO, due to lower phonon velocities, with a large component of the heat transport through an intraband tunnelling mechanism characteristic of amorphous materials. Comparison of the calculations to experimental measurements suggests the p-type electrical properties are significantly degraded by the thermal spin crossover, and materials-engineering strategies to suppress this could yield improved .
View Article and Find Full Text PDFJ Chem Phys
January 2025
Université Paris-Saclay, UVSQ, CNRS, GEMaC, 45 Avenue des Etats Unis, 78035 Versailles, France.
Among the large family of spin-crossover (SCO) solids, recent investigations focused on polynuclear SCO materials, whose specific molecular configurations allow the presence of multi-step transitions and elastic frustration. In this contribution, we develop the first elastic modeling of thermal and dynamical properties of trinuclear SCO solids. For that, we study a finite SCO open chain constituted of successive elastically coupled trinuclear (A=B=C) blocks, in which each site (A, B, and C) may occupy two electronic configurations, namely, low-spin (LS) and high-spin (HS) states, accompanied with structural changes.
View Article and Find Full Text PDFChemistry
January 2025
School of Chemistry, University College Dublin, Belfield, Dublin 4, D04 N2E5, Ireland.
Symmetry breaking spin state transitions in two of three isostructural salts of Mn spin crossover cations, [Mn(3-OMe-5-NO-sal323)], with heavy anions are reported. The ReO (1) salt undergoes two-step spin crossover which is coupled with a re-entrant symmetry breaking structural phase transition between a high temperature phase (S=2, C2/c), an intermediate ordered phase (S=1/S=2, P2/c), and a low temperature phase (S=1, C2/c). The AsF (2) complex undergoes an abrupt transition between a high temperature phase (S=2, C2/c) and a low temperature ordered phase (S=1/S=2, P ).
View Article and Find Full Text PDFDalton Trans
January 2025
State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, P. R. China.
Molecular materials that exhibit synergistic coupling between luminescence and spin-crossover (SCO) behaviors hold significant promise for applications in molecular sensors and memory devices. However, the rational design and underlying coupling mechanisms remain substantial challenges in this field. In this study, we utilized a luminescent complementary ligand pair as an intramolecular luminophore to construct a new Fe-based SCO complex, namely [FeLL](BF)·HO (1-Fe, L is a 2,2':6',2''-terpyridine (TPY) derivative ligand and L is 2,6-di-1-pyrazol-1-yl-4-pyridinecarboxylic acid), and two isomorphic analogs (2-Co, [CoLL](BF)·HO and 3-Zn, [ZnLL](BF)·HO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!