The aromatizing ring-closing metathesis has been shown to take place inside an extended porous framework. Employing a combination of solvent-assisted linker exchange and postsynthesis modification using olefin metathesis, the noninterpenetrated SALEM-14 was formed and converted catalytically into PAH-MOF-1 with polycyclic aromatic hydrocarbon (PAH) pillars. The metal-organic framework in SALEM-14 prevents "intermolecular" olefin metathesis from occurring between the pillars in the presence of the first generation Hoveyda-Grubbs catalyst, while favoring the production of a PAH, which can be released from the framework under acidic conditions in dimethylsulfoxide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja407333q | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!