The ∼5.3-6.0 million-year-old evaporitic gypsum deposits of Cyprus and Crete contain a variety of stromatolites that formed during the Messinian salinity crisis. We recognize four stromatolite morphotypes, including domical, conical, columnar, and flat-laminated structures. Observations of morphological and textural variations among the different morphotypes reveal significant diversity and complexity in the nature of interactions between microorganisms, gypsum deposition, and gypsum crystal growth. Nonbiological processes (detrital gypsum deposition, in situ crust precipitation, syntaxial crystal growth, subsurface crystal growth, and recrystallization) interacted with inferred microbial processes (including localized growth of biofilms, trapping and binding of grains in mats, nucleation of gypsum on cells) to produce distinct morphological-textural assemblages. Evidence for biological origins is clear in some stromatolite morphotypes and can come from the presence of microfossils, the spatial distribution of organic matter, and stromatolite morphology. In one stromatolite morphotype, the presence of the stromatolite, or the biota associated with it, may have determined the morphology of gypsum crystals. In some stromatolite morphotypes, definitive evidence of a microbial influence is not as clear. There are broad similarities between the Messinian gypsum stromatolites and carbonate stromatolites elsewhere in the geologic record, such as the formation of precipitated and granular layers; the development of domed, columnar, and conical morphotypes; the potential for microbes to influence mineral precipitation; and the recrystallization of deposits during burial. However, in detail the array of microbial-sedimentary-diagenetic process interactions is quite distinct in gypsiferous systems due to differences in the way gypsum typically forms and evolves in the paleoenvironment compared to carbonate. Unique aspects of the taphonomy of gypsum compared to carbonate chemical sediments, generally speaking, include the following: the potential for growth of individual crystals to determine the shape of a stromatolite (and possibly vice versa), a more diverse set of outcomes relating to preservation versus destruction of textures through crystal growth and recrystallization, and a greater likelihood of preserving microfossils through encapsulation in large crystals. These insights gained from the study of terrestrial gypsum sedimentary rocks provide valuable guidance for the search for clues to past life in sulfate chemical sediments on Mars.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ast.2013.1021DOI Listing

Publication Analysis

Top Keywords

crystal growth
16
gypsum
12
stromatolite morphotypes
12
gypsum stromatolites
8
gypsum deposition
8
growth recrystallization
8
compared carbonate
8
chemical sediments
8
stromatolite
7
growth
6

Similar Publications

Background: Sodium vanadium fluorophosphate is a sodium ion superconductor material with high sodium ion mobility and excellent cyclic stability, making it a promising cathode material for sodium-ion batteries. However, most of the literature and patents report preparation through traditional methods, which involve complex processes, large particle sizes, and low electronic conductivity, thereby limiting development progress.

Objective: Aiming at the limitation of high cost and poor performance of vanadium sodium fluorophosphate cathode material, the low temperature and high-efficiency nano preparation technology was developed.

View Article and Find Full Text PDF

Symmetrical and asymmetrical surface structure expansions of silver nanoclusters with atomic precision.

Chem Sci

January 2025

Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China

Controlling symmetrical or asymmetrical growth has allowed a series of novel nanomaterials with prominent physicochemical properties to be produced. However, precise and continuous size growth based on a preserved template has long been a challenging pursuit, yet little has been achieved in terms of manipulation at the atomic level. Here, a correlated silver cluster series has been established, enabling atomically precise manipulation of symmetrical and asymmetrical surface structure expansions of metal nanoclusters.

View Article and Find Full Text PDF

Polymer composite materials encounter considerable challenges in sustaining superior tribological properties at high rotational speeds. Inspired by the microstructure of dragonfly wings, a novel thermally stable and ambient pressure curing poly(urea-imide) resin (PURI) with excellent tribological properties has been eco-friendly synthesis using bio-based greener solvents. Furthermore, The PURI composites enhanced with polyether ether ketone (PEEK) and Polytetrafluoroethylene (PTFE) blended fabrics demonstrate excellent mechanical, with tensile strengths exceeding 175 MPa.

View Article and Find Full Text PDF

A semi-automated workflow relying on atomic-scale modelling is introduced to explore and understand the yet-unsolved structure of the crystalline AsTe material, recently obtained from crystallization of the parent AsTe glass, which shows promising properties for thermoelectric applications. The seemingly complex crystal structure of AsTe is investigated with density functional theory, from the stand point of As/Te disorder, in a structural template derived from elemental-Te (Te), following experimental findings from combined X-ray total scattering and diffraction. Our workflow includes a combinatorial structure generation step followed by successive structure selection and relaxation steps with progressively-increasing accuracy levels and a multi-criterion evaluation procedure.

View Article and Find Full Text PDF

An Alternative Hypothesis on Enhanced Deep Supercooling of Water: Nucleator Inhibition via Bicarbonate Adsorption.

J Phys Chem Lett

January 2025

Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Villeurbanne Cédex, France.

Supercooling allows for retarding water crystallization toward negative Celsius temperatures. Previous findings of CO molecules shifting into bicarbonate species upon freezing, the latter which naturally adsorb on hydrophobic interfaces, are put in perspective here to interpret earlier published data. Since it has been shown that ice nucleation is unlikely on negatively charged surfaces, I propose that bicarbonates adsorb on most solid particles present in water that act as nucleators, thus retarding freezing and enhancing supercooling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!