The effects of dietary supplementation with an organic extract of Curcuma longa on systemic and local immune responses to experimental Eimeria maxima and Eimeria tenella infections were evaluated in commercial broiler chickens. Dietary supplementation with C. longa enhanced coccidiosis resistance as demonstrated by increased BW gains, reduced fecal oocyst shedding, and decreased gut lesions compared with infected birds fed a nonsupplemented control diet. The chickens fed C. longa-supplemented diet showed enhanced systemic humoral immunity, as assessed by greater levels of serum antibodies to an Eimeria microneme protein, MIC2, and enhanced cellular immunity, as measured by concanavalin A-induced spleen cell proliferation, compared with controls. At the intestinal level, genome-wide gene expression profiling by microarray hybridization identified 601 differentially expressed transcripts (287 upregulated, 314 downregulated) in gut lymphocytes of C. longa-fed chickens compared with nonsupplemented controls. Based on the known functions of the corresponding mammalian genes, the C. longa-induced intestinal transcriptome was mostly associated with genes mediating anti-inflammatory effects. Taken together, these results suggest that dietary C. longa could be used to attenuate Eimeria-induced, inflammation-mediated gut damage in commercial poultry production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3382/ps.2013-03095 | DOI Listing |
J Agric Food Chem
January 2025
Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan.
Curcuminoids, found in turmeric ( L.), include curcumin (CUR), demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC). Although CUR and DMC are well-studied, the anti-inflammatory effects of BDMC remain less explored.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Plantation Products, Spices & Flavour Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:
This study investigates the effects of silver nanoparticles (Ag NPs), biogenic silver nanoparticles derived from Rhizopus spp. (R.Ag NPs), and Rhizopus (R) elicitors on the yield and bioactive compounds of turmeric (Curcuma longa) using foliar spray and rhizome dipping techniques.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China; School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200030, China; Xinchang Pharmaceutical Factory, Zhejiang Medicine CO., LTD, China. Electronic address:
Curcuma wenyujin is acknowledged as a crucial medicinal plant containing essential oils, primarily composed of sesquiterpenoids. While numerous sesquiterpenoids exhibit versatile physiological activities, their levels in C. wenyujin are generally low, particularly the pivotal anti-cancer component elemene.
View Article and Find Full Text PDFPharmaceutics
January 2025
Université de Lorraine, F-54000 Nancy, France.
Curcumin, a bioactive compound derived from the rhizome of L., has garnered significant attention for its potent anticancer properties. Despite its promising therapeutic potential, its poor bioavailability, rapid metabolism, and low water solubility hinder curcumin's clinical application.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
This study investigates the potential synergistic effects of extracts from (turmeric), (Arabica coffee beans), and (chili peppers) in reducing oxidative stress and inflammation, which are associated with metabolic disorders such as obesity, diabetes, and cardiovascular diseases. Using a systematic design of experiment (DoE) optimization approach, an optimal extract ratio of 1:3:4 (turmeric: coffee: chili) was identified. The efficacy of the extract combination was assessed through various antioxidant assays, inhibition of inflammation-related gene expression, and safety testing via the 3-(4,5-dimethylthazolk-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!