Genome mining for new α-amylase and glucoamylase encoding sequences and high level expression of a glucoamylase from Talaromyces stipitatus for potential raw starch hydrolysis.

Appl Biochem Biotechnol

Aquatic and Crop Resource Development, National Research Council Canada, 6100 Royalmount Ave., Montreal, Quebec, H4P 2R2, Canada.

Published: January 2014

Mining fungal genomes for glucoamylase and α-amylase encoding sequences led to the selection of 23 candidates, two of which (designated TSgam-2 and NFamy-2) were advanced to testing for cooked or raw starch hydrolysis. TSgam-2 is a 66-kDa glucoamylase recombinantly produced in Pichia pastoris and originally derived for Talaromyces stipitatus. When harvested in a 20-L bioreactor at high cell density (OD600 > 200), the secreted TSgam-2 enzyme activity from P. pastoris strain GS115 reached 800 U/mL. In a 6-L working volume of a 10-L fermentation, the TSgam-2 protein yield was estimated to be ∼8 g with a specific activity of 360 U/mg. In contrast, the highest activity of NFamy-2, a 70-kDa α-amylase originally derived from Neosartorya fischeri, and expressed in P. pastoris KM71 only reached 8 U/mL. Both proteins were purified and characterized in terms of pH and temperature optima, kinetic parameters, and thermostability. TSgam-2 was more thermostable than NFamy-2 with a respective half-life (t1/2) of >300 min at 55 °C and >200 min at 40 °C. The kinetic parameters for raw starch adsorption of TSgam-2 and NFamy-2 were also determined. A combination of NFamy-2 and TSgam-2 hydrolyzed cooked potato and triticale starch into glucose with yields, 71-87 %, that are competitive with commercially available α-amylases. In the hydrolysis of raw starch, the best hydrolysis condition was seen with a sequential addition of 40 U of a thermostable Bacillus globigii amylase (BgAmy)/g starch at 80 °C for 16 h, and 40 U TSgam-2/g starch at 45 °C for 24 h. The glucose released was 8.7 g/10 g of triticale starch and 7.9 g/10 g of potato starch, representing 95 and 86 % of starch degradation rate, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-013-0460-3DOI Listing

Publication Analysis

Top Keywords

raw starch
16
starch
10
encoding sequences
8
talaromyces stipitatus
8
starch hydrolysis
8
tsgam-2 nfamy-2
8
originally derived
8
kinetic parameters
8
min °c
8
triticale starch
8

Similar Publications

Yam noodles were produced by replacing high-gluten wheat flour with yam flour modified with plasma-activated water and twin-screw extrusion (PAW-TSE). The effects of varying amounts of modified yam flour on the color, cooking characteristics, texture, and in vitro digestibility of the noodles were investigated. As the amount of modified yam flour increased, the noodles became darker in color, while the bound water content increased, and the free water content decreased.

View Article and Find Full Text PDF

High-affinity uric acid clearance based on motile β-CD/F-127 polyrotaxane microspheres for enhanced diabetic wound repair.

Carbohydr Polym

March 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Biomedical Engineering, Jinan University, Guangzhou 510632, China. Electronic address:

Hyperuricemia-related diabetic wounds are notoriously difficult to treat due to elevated uric acid (UA) levels, excessive reactive oxygen species (ROS), and chronic inflammation. Current therapies often fail to address these underlying causes, underscoring the need for innovative approaches that not only clear UA but also mitigate inflammation and promote tissue regeneration. In this study, we developed a polyrotaxane-based microsphere (HPR MS) system conjugated with 4,5-diamino-2-thiouracil (DT) to achieve high-affinity UA clearance without increasing cytotoxicity.

View Article and Find Full Text PDF

In recent years, the environmental impacts of plastic production and consumption have become increasingly significant, particularly due to their petroleum-based origins and the substantial waste management challenges they pose. Currently, global plastic waste production has reached 413.8 million metric tons across 192 countries, contributing notably to greenhouse gas emissions.

View Article and Find Full Text PDF

Production of Starch-Based Flexible Food Packaging in Developing Countries: Analysis of the Processes, Challenges, and Requirements.

Foods

December 2024

Food Packaging and Shelf Life Laboratory, Instituto de Ciencia y Tecnología de Alimentos, Universidad Nacional de Colombia, Carrera 30 Número 45-03, Edificio 500A, Bogotá 111321, Colombia.

Biodegradable packaging offers an affordable and sustainable solution to global pollution, particularly in developing countries with limited recycling infrastructure. Starch is well suited to develop biodegradable packages for foods due to its wide availability and simple, low-tech production process. Although the development of starch-based packaging is well documented, most studies focus on the laboratory stages of formulation and plasticization, leaving gaps in understanding key phases such as raw material conditioning, industrial-scale molding, post-production processes, and storage.

View Article and Find Full Text PDF

While the digestibility of millet starch has been studied considerably, the effects of cooking on starch digestibility in millet remain insufficiently understood. This study investigated the effects of cooking on in vitro enzymatic starch digestion in eight cooked millet flour cultivars by seeking its correlations with the changes in composition (moisture, total starch, protein, lipids, total dietary fiber, and phenolics), structure, and physicochemical properties. Compared to raw flours, cooked flours had a similar content of total starch and protein, a lower content of moisture, lipids, and total phenolic content, and a higher content of total dietary fiber.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!