Skeletal fusions with sterility (sks) is an autosomal recessive mutation of mouse that results in male and female sterility because of defects in gametogenesis. The mutants also have skeletal malformations with fused vertebrae and ribs. We examined testicular phenotypes of sks/sks mice to investigate the defects in spermatogenesis. Histological and immunocytochemical analyses and expression analyses of the marker genes demonstrated that spermatogenesis is arrested at mid to late pachytene stage of meiotic prophase with defective synapsis of the homologous chromosomes. Next, we determined the precise chromosomal localization of the sks locus on a 0.3-Mb region of mouse chromosome 4 by linkage analysis. By sequencing the positional candidate genes in this region and whole exome sequencing, we found a GG to TT nucleotide substitution in exon 6 of the Tmem48 gene that encodes a putative transmembrane protein with six transmembrane domains. The nucleotide substitution causes aberrant splicing, which deletes exon 6 of the Tmem48 transcript. Specific expression of TMEM48 was observed in germ cells of males and females. Furthermore, the phenotypes of the sks mutant were completely rescued by the transgenesis of a genomic fragment containing the wild-type Tmem48 gene. These findings indicate that the Tmem48 mutation is responsible for the gametogenesis defects and skeletal malformations in the sks mice. The TMEM48 protein is a nuclear membrane protein comprising the nuclear pore complex; its exact function in the nuclear pore complex is still unknown. Our finding suggested that the nuclear pore complex plays an important role in mammalian gametogenesis and skeletal development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814776PMC
http://dx.doi.org/10.1074/jbc.M113.492306DOI Listing

Publication Analysis

Top Keywords

nuclear pore
16
pore complex
16
gametogenesis defects
8
defects skeletal
8
skeletal fusions
8
fusions sterility
8
sterility sks
8
sks mice
8
skeletal malformations
8
nucleotide substitution
8

Similar Publications

Oogenesis involves a novel nuclear envelop remodeling mechanism in Schmidtea mediterranea.

Dev Biol

December 2024

Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA. Electronic address:

The cell nuclei of Ophisthokonts, the eukaryotic supergroup defined by fungi and metazoans, is remarkable in the constancy of their double-membraned structure in both somatic and germ cells. Such remarkable structural conservation underscores common and ancient evolutionary origins. Yet, the dynamics of disassembly and reassembly displayed by Ophisthokont nuclei vary extensively.

View Article and Find Full Text PDF

Nuclear pore permeability and fluid flow are modulated by its dilation state.

Mol Cell

December 2024

Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany. Electronic address:

Changing environmental conditions necessitate rapid adaptation of cytoplasmic and nuclear volumes. We use the slime mold Dictyostelium discoideum, known for its ability to tolerate extreme changes in osmolarity, to assess which role nuclear pore complexes (NPCs) play in achieving nuclear volume adaptation and relieving mechanical stress. We capitalize on the unique properties of D.

View Article and Find Full Text PDF

Nuclear pore complexes (NPCs) act as gateways across the nuclear envelope for molecular transport between the nucleus and the cytoplasm in eukaryotes. NPCs consist of several subcomplexes formed by multiple copies of approximately 30 different proteins known as nucleoporins (Nups). In the fission yeast Schizosaccharomyces pombe, the NPC structure is unique, particularly in its outer ring subcomplexes, where the cytoplasmic and nucleoplasmic outer rings are composed of distinct sets of proteins.

View Article and Find Full Text PDF

The Belt and Road strategy has significantly advanced the scale of infrastructure construction in the Qinghai-Tibet Plateau permafrost area. Consequently, this demands higher requirements on the strength and frost resistance of concrete (FRC) cured under low-temperature and negative-temperature conditions. Accordingly, in this study, tests on the mechanical properties and FRC were conducted under standard curing, 5 °C curing, and -3 °C curing conditions.

View Article and Find Full Text PDF

Background: NUP155 was reported to involve breast invasive carcinoma and hepatocellular carcinoma. We hypothesized that NUP155 and NDC1impacted the progression of NSCLC.

Methods: The dataset was analyzed to find differentially expressed genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!