Systemic mycoses in killer whales (Orcinus orca) are rare diseases, but have been reported. Two killer whales died by fungal infections at the Port of Nagoya Public Aquarium in Japan. In this study, the fungal flora of the pool environment at the aquarium was characterized. Alternaria spp., Aspergillus spp. (A. fumigatus, A. niger, A. versicolor), Fusarium spp. and Penicillium spp. were isolated from the air and the pool surroundings. The other isolates were identified as fungal species non-pathogenic for mammals. However, the species of fungi isolated from the environmental samples in this study were not the same as those isolated from the cases of disease in killer whales previously reported.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11046-013-9702-8DOI Listing

Publication Analysis

Top Keywords

killer whales
16
whales orcinus
8
orcinus orca
8
environmental isolates
4
isolates fungi
4
fungi aquarium
4
aquarium pools
4
pools housing
4
killer
4
housing killer
4

Similar Publications

Biomimetic swarm fission driven algorithm with preassigned target subgroup size.

Bioinspir Biomim

January 2025

South China University of Technology, No. 381, Wushan Road, Tianhe District, Guangzhou City, Guangdong Province, China, Guangzhou, 510640, CHINA.

Inspired by killer whale hunting strategies, this study presents a biomimetic algorithm for controlled subgroup fission in swarms. The swarm agents adopt the classic social force model with some practical modifications. The proposed algorithm consists of three phases: cluster selection phase via a constrained K-means algorithm, driven phase with strategic agent movement, including center pushing, coordinated oscillation, and flank pushing by specialized driven agents, and judgment phase confirming subgroup separation using the Kruskal algorithm.

View Article and Find Full Text PDF

Killer whales () have been documented to prey on white sharks (), in some cases causing localised shark displacement and triggering ecological cascades. Notably, a series of such predation events have been reported from South Africa over the last decade, with killer whales specifically targeting sharks' liver. However, observations of these interactions are rare, and knowledge of their frequency across the world's oceans remains limited.

View Article and Find Full Text PDF

The expansion of drone-based aerial imagery has facilitated an increase in data obtained from free-ranging marine mammal populations, in particular cetacean species. This non-invasive approach allows for body condition assessments, including nutritional and reproductive health. Yet, existing methods of image analysis are time-consuming and lack the granularity to determine early-stage pregnancies and miscarriage rates.

View Article and Find Full Text PDF

Kinship clustering within an ecologically diverse killer whale metapopulation.

Heredity (Edinb)

January 2025

Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.

Metapopulation dynamics can be shaped by foraging ecology, and thus be sensitive to shifts in prey availability. Genotyping 204 North Atlantic killer whales at 1346 loci, we investigated whether spatio-temporal population structuring is linked to prey type and distribution. Using population-based methods (reflecting evolutionary means), we report a widespread metapopulation connected across ecological groups based upon nuclear genome SNPs, yet spatial structuring based upon mitogenome haplotypes.

View Article and Find Full Text PDF

Fatty acid carbon isotopes as tracers of trophic structure and contaminant biomagnification in Arctic marine food webs.

Sci Total Environ

January 2025

Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada. Electronic address:

Mercury (Hg) and persistent organic pollutant (POP) accumulation among species and biomagnification through food webs is typically assessed using stable isotopes of nitrogen (δN) and carbon (δC) in bulk (whole) tissues. Yet, bulk isotopic approaches have limitations, notably from the potential overlap of isotope values from different dietary sources and from spatial variation in source (baseline) signals. Here, we explore the potential of fatty acid carbon isotopes (FA δC) to (1) evaluate the trophic structure of a marine food web, (2) distinguish feeding patterns among four marine mammal consumers, (3) trace contaminant biomagnification through a food web, and (4) explain interspecific variation in contaminants among high-trophic position predators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!