A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of a genetic group and unknown paternity models for growth traits in Nellore cattle. | LitMetric

Comparison of a genetic group and unknown paternity models for growth traits in Nellore cattle.

J Anim Sci

Embrapa Goats and Sheep, Sobral, CE 62010-970, Brazil.

Published: November 2013

The aim of the present study was to compare a model assuming unknown paternity and a model using genetic grouping to indicate the most adequate statistical procedure for the estimation of breeding values for animals with uncertain paternity. After data consistency, 62,212 Nellore animals, offspring of 581 bulls and 27,743 cows, were used in the analyses. The pedigree file contained 75,088 animals, including 22,810 (30.18%) offspring of multiple sires and 12,876 animals belonging to the base population with unknown parents. Three different approaches were adopted to deal with uncertain paternity of multiple-sire (MS) offspring. In the model of unknown paternity, the MS groups were ignored, and the sires of MS offspring were considered to be unknown and to belong to a single base population. In the genetic group approach, 2 definitions were used. In the first definition (GGa), "phantom parents" for animals with uncertain paternity were attributed, defining the genetic group as the MS group. In the other approach, GGb, phantom parents for animals with uncertain paternity were also attributed; however, MS offspring were clustered in genetic groups according to their year of birth, every 3 yr, on the basis of the average of male generation interval. Univariate analyses were performed under the Bayesian approach via Markov chain Monte Carlo methods. Models were compared by deviance information criteria and the conditional predictive ordinate. According to the choice criteria results, the genetic group model defined by the generation interval of males was more appropriate for predicting the genetic merit of animals with uncertain paternity. Therefore, the use of this model is recommended for the prediction of genetic merit and classification of offspring of multiple sires.

Download full-text PDF

Source
http://dx.doi.org/10.2527/jas.2011-4989DOI Listing

Publication Analysis

Top Keywords

uncertain paternity
20
genetic group
16
animals uncertain
16
unknown paternity
12
paternity
8
paternity model
8
offspring multiple
8
multiple sires
8
base population
8
group approach
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!