Blood pressure (BP) reduction after intracerebral hemorrhage (ICH) is controversial, because of concerns that this may cause critical reductions in perihematoma perfusion and thereby precipitate tissue damage. We tested the hypothesis that BP reduction reduces perihematoma tissue oxygenation.Acute ICH patients were randomized to a systolic BP target of <150 or <180 mm Hg. Patients underwent CT perfusion (CTP) imaging 2 hours after randomization. Maps of cerebral blood flow (CBF), maximum oxygen extraction fraction (OEF(max)), and the resulting maximum cerebral metabolic rate of oxygen (CMRO2(max)) permitted by local hemodynamics, were calculated from raw CTP data.Sixty-five patients (median (interquartile range) age 70 (20)) were imaged at a median (interquartile range) time from onset to CTP of 9.8 (13.6) hours. Mean OEF(max) was elevated in the perihematoma region (0.44±0.12) relative to contralateral tissue (0.36±0.11; P<0.001). Perihematoma CMRO2(max) (3.40±1.67 mL/100 g per minute) was slightly lower relative to contralateral tissue (3.63±1.66 mL/100 g per minute; P=0.025). Despite a significant difference in systolic BP between the aggressive (140.5±18.7 mm Hg) and conservative (163.0±10.6 mm Hg; P<0.001) treatment groups, perihematoma CBF was unaffected (37.2±11.9 versus 35.8±9.6 mL/100 g per minute; P=0.307). Similarly, aggressive BP treatment did not affect perihematoma OEF(max) (0.43±0.12 versus 0.45±0.11; P=0.232) or CMRO2(max) (3.16±1.66 versus 3.68±1.85 mL/100 g per minute; P=0.857). Blood pressure reduction does not affect perihematoma oxygen delivery. These data support the safety of early aggressive BP treatment in ICH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887345 | PMC |
http://dx.doi.org/10.1038/jcbfm.2013.164 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!