We have measured the decay of chlorophyll a fluorescence at 4 degrees C under anaerobic conditions in stabilized photosystem II reaction center complex isolated from spinach, using multifrequency (2-400 MHz) cross-correlation phase fluorometry. Examination of our data shows that although the fluorescence decay of open reaction centers (i.e., when both the electron donor P-680 and the electron acceptor pheophytin are capable of engaging in charge separation) can be analyzed as a multiexponential decay, another representation of the data is obtained when the decay is analyzed using a continuous distribution of lifetimes. Our results on the open reaction center differ from the two lifetime components of 25 ps and 35 ns published by Mimuro et al. (Biochim. Biophys. Acta 933 (1988) 478-486) for the D1-D2-cytochrome b-559 complex, obtained for F682 at 4 degrees C by a time-resolved photon-counting spectrofluorometer. When the reaction centers are closed by pretreatment with sodium dithionite and methyl viologen followed by exposure to laser excitation, conditions known to result in accumulation of reduced pheophytin, a dramatic decrease in the contribution of the slow lifetime component(s) is observed. These results suggest that the slow distribution lifetime component(s) in the 5-20 ns range originate(s) in the back reaction of the charge separated state. On the other hand, the fast lifetime component(s) in the picosecond range may be only partially related to the charge separation, since no dramatic change is observed upon closure of the reaction center. Perhaps, this component is related, in part, to the excitation energy migration among the various chromophores in the reaction center preparations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0005-2728(90)90017-x | DOI Listing |
Biochemistry
January 2025
Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau 79106, Germany.
Human CblC catalyzes the indispensable processing of dietary vitamin B by the removal of its β-axial ligand and an either one- or two-electron reduction of its cobalt center to yield cob(II)alamin and cob(I)alamin, respectively. Human CblC possesses five cysteine residues of an unknown function. We hypothesized that Cys149, conserved in mammals, tunes the CblC reactivity.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
January 2025
Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China.
In the early stages, chronic kidney disease (CKD) can be asymptomatic, marking diagnosis difficult. This study aimed to investigate the diagnostic role and potential regulatory mechanisms of nucleolar protein 14 (NOP14) -antisense RNA 1 (AS1) in patients with CKD. Herein, 68 patients with CKD, 65 patients with CKD undergoing peridialysis, and 80 healthy adults were included.
View Article and Find Full Text PDFSci Rep
January 2025
School of Urban Geology and Engineering, Hebei GEO University, 050031, Shijiazhuang, China.
Both over-exploitation and exploitation reduction of groundwater can alter the conditions of groundwater recharge and discharge, thereby impacting the overall quality of groundwater. This study utilizes hydrogeochemical methods and statistical analysis to explore the spatial and temporal evolution characteristics and influencing factors of groundwater chemistry in the saline-freshwater funnel area of Hengshui City under exploitation reduction. The results showed that: With the exception of the deep freshwater funnel area in the western region, which exhibits a trend of water quality deterioration (Cl accounted for more than 25%), groundwater quality in the other funnel areas demonstrates an improving trend (HCO[Formula: see text] accounted for more than 25%).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre U. 9, 1092, Budapest, Hungary.
Microtiter-plate-based systems are unified platforms of high-throughput experimentation (HTE). These polymeric devices are used worldwide on a daily basis-mainly in the pharmaceutical industry-for parallel syntheses, reaction optimization, various preclinical studies and high-throughput screening methods. Accordingly, laboratory automation today aims to handle these commercially available multiwell plates, making developments focused on their modifications a priority area of modern applied research.
View Article and Find Full Text PDFNat Commun
January 2025
School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, PR China.
Developing efficient strategies for the deoxygenative functionalization of carbonyl compounds is crucial for enhancing the effective utilization of biomass and the upgrading of chemical feedstocks. In this study, we present an elegant cathodic reduction strategy that enables a tandem alkylation/dearomatization reaction between quinoline derivatives and aryl aldehydes/ketones in a one-pot process. Our approach can be executed via two distinct paths: the aluminum (Al)-facilitated spin-center shift (SCS) path and the Al-facilitated direct deoxygenation path.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!