ASB proteins are the specificity subunits of cullin5-RING E3 ubiquitin ligases (CRL5) that play roles in ubiquitin-mediated protein degradation. However, how their activity is regulated remains poorly understood. Here, we unravel a novel mechanism of regulation of a CRL5 through phosphorylation of its specificity subunit ASB2α. Indeed, using mass spectrometry, we showed for the first time that ASB2α is phosphorylated and that phosphorylation of serine-323 (Ser-323) of ASB2α is crucial for the targeting of the actin-binding protein filamin A (FLNa) to degradation. Mutation of ASB2α Ser-323 to Ala had no effect on intrinsic E3 ubiquitin ligase activity of ASB2α but abolished the ability of ASB2α to induce degradation of FLNa. In contrast, the ASB2α Ser-323 to Asp phosphomimetic mutant induced acute degradation of FLNa. Moreover, inhibition of the extracellular signal-regulated kinases 1 and 2 (Erk1/2) activity reduced ASB2α-mediated FLNa degradation. We further showed that the subcellular localization of ASB2α to actin-rich structures is dependent on ASB2α Ser-323 phosphorylation and propose that the interaction with FLNa depends on the electrostatic potential redistribution induced by the Ser-323 phosphate group. Taken together, these data unravel an important mechanism by which ASB2α-mediated FLNa degradation can be regulated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2013.09.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!