Background: Wheat gluten has unique nutritional and technological characteristics, but is also a major trigger of allergies and intolerances. One of the most severe diseases caused by gluten is coeliac disease. The peptides produced in the digestive tract by the incomplete digestion of gluten proteins trigger the disease. The majority of the epitopes responsible reside in the gliadin fraction of gluten. The location of the multiple gliadin genes in blocks has to date complicated their elimination by classical breeding techniques or by the use of biotechnological tools.As an approach to silence multiple gliadin genes we have produced 38 transgenic lines of bread wheat containing combinations of two endosperm-specific promoters and three different inverted repeat sequences to silence three fractions of gliadins by RNA interference.
Results: The effects of the RNA interference constructs on the content of the gluten proteins, total protein and starch, thousand seed weights and SDSS quality tests of flour were analyzed in these transgenic lines in two consecutive years. The characteristics of the inverted repeat sequences were the main factor that determined the efficiency of silencing. The promoter used had less influence on silencing, although a synergy in silencing efficiency was observed when the two promoters were used simultaneously. Genotype and the environment also influenced silencing efficiency.
Conclusions: We conclude that to obtain wheat lines with an optimum reduction of toxic gluten epitopes one needs to take into account the factors of inverted repeat sequences design, promoter choice and also the wheat background used.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852848 | PMC |
http://dx.doi.org/10.1186/1471-2229-13-136 | DOI Listing |
Physiol Plant
January 2025
School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
Legume leaves exhibit diverse compound forms, with various regulatory mechanisms underlying the development. The transcription factor-encoding KNOXI genes are required to promote leaflet initiation in most compound-leafed angiosperms. In non-IRLC (inverted repeat-lacking clade) legumes, KNOXI are expressed in compound leaf primordia but not in others (IRLC).
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Department of Radiation Oncology, Henry Ford Health, Detroit, MI, USA.
Automatic segmentation of angiographic structures can aid in assessing vascular disease. While recent deep learning models promise automation, they lack validation on interventional angiographic data. This study investigates the feasibility of angiographic segmentation using in-context learning with the UniverSeg model, which is a cross-learning segmentation model that lacks inherent angiographic training.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Ophthalmology, University of North Carolina, 130 Mason Farm Rd, Chapel Hill, NC 27517, USA.
Adeno-associated virus (AAV) inverted terminal repeats (ITRs) induce p53-dependent apoptosis in human embryonic stem cells (hESCs). To interrogate this phenomenon, a synthetic ITR (SynITR), harboring substitutions in putative p53 binding sites was generated and evaluated for vector production and gene delivery. Replication of SynITR flanked transgenic genome was similar compared to wild type (wt) ITR, with a modest increase in vector titers.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China; Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China. Electronic address:
Background: Accurate quantification of microRNA (miRNA) is of great significance because it provides opportunities for the accurate early diagnosis of a series of human diseases including cancers. Currently, complicated nucleic acid amplification technologies are always required for the highly sensitive miRNA detection. The introduction of nucleic acid signal amplification coupled with various enzymes will inevitably lead to tedious work and increase the complexity of the analysis process.
View Article and Find Full Text PDFViruses
January 2025
Biological Sciences Department, University of Pittsburgh, Pittsburgh, PA 15260, USA.
Six novel phages belonging to the family were isolated using as a host. Phages MuffinTheCat, Badulia, DesireeRose, Bee17, SCoupsA, and LuzDeMundo were purified from environmental samples by students participating in the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program at Alliance University, New York. The phages have linear dsDNA genomes 15,438-15,636 bp with 112-120 bp inverted terminal repeats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!