Lidocaine as an analgesic is of particular interest in both acute and chronic pain conditions and is used via injections or transdermal patches. While injections are associated with problems such as patient incompliance, topical administration of lidocaine using patches is less efficient due to variability of drug absorption among individuals, slower drug permeation through the skin, and hence a resultant undesirable delay in analgesic effects. To address this clinical problem, we developed a microneedle integrated transdermal patch (MITP), using a photolithography based process, in which microneedles create micrometer-sized channels in the skin to deliver lidocaine rapidly, while the reservoir patch holding the bulk of the drug enables higher drug loading and carries on to release the drug for prolonged periods. We demonstrated a new approach of drug delivery using microneedles, where drugs diffuse out of microneedles through the porous channels left by dissolving drug particles. MITP was shown to be able to encapsulate up to 70 mg of lidocaine. In vitro permeation through rat skin demonstrated that MITP delivered a significantly higher amount of lidocaine than a commercial patch and with a faster onset of drug permeation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/mp400359wDOI Listing

Publication Analysis

Top Keywords

microneedle integrated
8
integrated transdermal
8
transdermal patch
8
drug
8
drug permeation
8
lidocaine
6
patch
4
patch fast
4
fast onset
4
onset sustained
4

Similar Publications

Myocardial infarction is a condition where the heart muscle is damaged due to clogged coronary arteries. There are limited treatment options for treating myocardial infarction. Microneedle patches have recently become popular as a possibly viable therapy for myocardial.

View Article and Find Full Text PDF

Progression of photoresin-based microneedles: From established drug delivery to emerging biosensing technologies.

Biosens Bioelectron

January 2025

Department of Electrical Engineering (ESAT-MNS), Catholic University of Leuven (KU Leuven), 3001, Leuven, Belgium; KU Leuven, Department of Physics and Astronomy (HF), Celestij€nenlaan 300D, 3001, Leuven, Belgium; Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnology, Arnesano, Italy.

Microneedles have emerged as a highly promising technology for advancing chemical biosensing and drug delivery applications, offering a minimally invasive, efficient, and versatile approach to healthcare innovation. This review provides a comprehensive analysis of photoresin-based microneedles, with a particular focus on SU-8 photoresin due to its favorable mechanical properties, biocompatibility, and ease of fabrication. Advanced techniques for surface modification are discussed to enhance the functionality of microneedles, enabling their application in precise biochemical diagnostics and effective drug therapy.

View Article and Find Full Text PDF

Spontaneously Photocatalytic Nanoplatform for Sensitive Diagnosis and Penetrated Therapy of Cancer.

Anal Chem

January 2025

Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.

In this study, a sensitive diagnosis and spontaneously photocatalytic therapy of cancer based on chemiluminescence (CL) and nanozyme was studied. Briefly, carbon nitride-supported copper nanoparticles (CuCNs) loaded with luminol (CuCN-L) were utilized to develop a microneedle patch (CuCN-L/MN). The CuCN-L probe could target overexpressed HO in the TME and actively emit CL to achieve cancer cell imaging for diagnosis.

View Article and Find Full Text PDF

Corrigendum to "Artificial intelligence-driven hydrogel microneedle patches integrating 5-fluorouracil inclusion complex-loaded flexible pegylated liposomes for enhanced non-melanoma skin cancer treatment" [Int. J. Pharm. 669 (2025) 125072].

Int J Pharm

February 2025

Pharmaceutical Development of Green Innovations Group (PDGIG) Department of Industrial Pharmacy Faculty of Pharmacy Silpakorn University Nakhon Pathom Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000 Thailand. Electronic address:

View Article and Find Full Text PDF

Melanoma is characterized by its aggressiveness, high metastatic potential, and numerous mutations, which limit the effectiveness of current treatments. To address this issue, we developed a dissolvable microneedle (MN) system composed of poly(2-ethyl-2-oxazoline) (PEtOz) and chondroitin sulfate (CS). This MN system was loaded with liposomes containing both a NIR-II photothermal small molecule (IRLy) and the natural anticancer agent Gambogic acid (GA), forming Lip(IRLy + GA) MNs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!