Ultrasound (US) induced enhancement of plasma membrane permeability is a hugely promising tool for delivering exogenous vectors at the specific biological site in a safe and efficient way. In this respect, here we report effects of membrane permeability alteration on fibroblast-like cells undergoing very low-intensity of US. The change in permeability was pointed out in terms of high uptake efficiency of the fluoroprobe calcein, thus resembling internalization of small cell-impermeable model drugs, as measured by fluorescence microscopy and flow cytometry. Fluorescence evidences moreover suggests that the higher the time of exposure, the larger will be the size of molecules can be internalized. The uptake events were related to the cell viability and also with structural changes occurring at membrane level as revealed by infrared spectroscopy and preliminary membrane fluidity and atomic force microscopy (AFM) investigation. Thus, the question of whether the uptake of cell-impermeable molecules is consistent with the presence of disruptions on the cell membrane (sonopore formation) has been addressed. In this framework, our findings may constitute experimental evidence in support of sub-cavitation sonoporation models recently proposed, and they may also provide some hints towards the actual working condition of medical US dealing with the optimum risk to benefit therapeutic ratio.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/10717544.2013.836620 | DOI Listing |
Phytopathology
January 2025
Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Huaxi District, Guiyang, Guizhou Province of China, Guiyang, China, 550025;
Gray mold is an important disease of crops and is widespread, harmful, difficult to control, and prone to developing fungicide resistance. Screening new fungicides is an important step in controlling this disease. Hydroxychloroquine is an anti-inflammatory and anti-malarial agent, which has shown marked inhibitory activity against many fungi in medicine.
View Article and Find Full Text PDFBeilstein J Org Chem
January 2025
Institute of Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
Polysarcosine emerges as a promising alternative to polyethylene glycol (PEG) in biomedical applications, boasting advantages in biocompatibility and degradability. While the self-assembly behavior of block copolymers containing polysarcosine-containing polymers has been reported, their potential for shape transformation remains largely untapped, limiting their versatility across various applications. In this study, we present a comprehensive methodology for synthesizing, self-assembling, and transforming polysarcosine-poly(benzyl glutamate) block copolymers, resulting in the formation of bowl-shaped vesicles, disks, and stomatocytes.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye.
MXenes, a family of two-dimensional transition metal carbides and nitrides, exhibit exceptional properties such as high electrical conductivity, large surface area, and chemical versatility, making them ideal candidates for various dialysis applications. One prominent application of MXenes lies in the efficient removal of toxic metals and harmful dyes from wastewater. Their unique structure allows for rapid adsorption and selective separation, significantly improving purification processes.
View Article and Find Full Text PDFLangmuir
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China.
The remarkable flexibility in structural tunability and designability of poly(ionic liquids) (PILs) has garnered significant attention. Integration of PILs with membranes, novel properties, and functionalities is anticipated for applications in the fields of membrane separation. Here, we develop a facile method to prepare PIL-functionalized membranes in a one-step process by combining selective swelling-induced pore generation and ionic liquid functionalization.
View Article and Find Full Text PDFJ Microbiol Biotechnol
November 2024
Hanyang University ERICA, Ansan 15588, Republic of Korea.
Previous studies showed no improvement in bacterial biomass for Puniceispirillum marinum IMCC1322 under light regimes. Nevertheless, in nutrient-replete cultures with higher inoculating cell densities, strain IMCC1322 exhibited proteorhodopsin photoheterotrophy. Increasing both inoculum size and the amino acid pool can eliminate quorum sensing and starvation responses in strain IMCC1322.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!