Photolysis of CF3CH2CHO in the presence of O2 at 248 and 266 nm: quantum yields, products, and mechanism.

J Phys Chem A

Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha , Avda. Camilo José Cela, s/n. 13071 Ciudad Real, Spain.

Published: October 2013

Three different detection techniques, coupled to pulsed laser photolysis (PLP), have been employed to determine the quantum yields of CF3CH2CHO at 248 and 266 nm: CF3CH2CHO + hν → CF3CH2 + HCO (R1a), CF3CH2CHO + hν → CF3CH3 + CO (R1b), and CF3CH2CHO + hν → CF3CH2O + H (R1c). (a) In the presence of air, Fourier transform infrared (FTIR) spectroscopy was employed at a total pressure of 760 Torr to monitor and quantify the loss of CF3CH2CHO at both wavelengths as well as the build-up of formed products (CO, CF3CH3, CF3CHO, and CF3CH2OH) after various laser pulses. Cyclohexane was added as OH-scavenger in most experiments. CF3CH3 was observed and quantified at both wavelengths, confirming that channel R1b is occurring. Small amounts of HCOOH and COF2 were also detected. (b) Time-resolved cw-cavity ring down spectroscopy (cw-CRDS) at 40 Torr He coupled to photolysis at 248 nm was employed for the detection of HO2 radicals. Varying the O2 concentration allows distinguishing the origin of the HO2 radicals from either R1a or R1c. OH radicals were simultaneously detected by laser-induced fluorescence. (c) Time-resolved tunable diode laser absorption spectroscopy (TDLAS) at 30 Torr N2 coupled to photolysis at 266 nm was employed for the determination of the quantum yields of CO. By varying the O2 concentration, a distinction can be achieved between the yields of prompt CO R1b or decomposition of highly excited CF3CH2CO from R1c and HCO radicals R1a. Channel R1a has been identified as the major reaction path. The overall quantum yield, Φλ(CF3CH2CHO), at 248 nm was found as Φ248nm = (0.76 ± 0.14) and (0.73 ± 0.20) from cw-CRDS and FTIR experiments, respectively. At 266 nm, the overall quantum yield was found as Φ266nm = (0.55 ± 0.10) and (0.47 ± 0.10) from TDLAS and FTIR experiments, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp404823bDOI Listing

Publication Analysis

Top Keywords

quantum yields
12
cf3ch2cho hν
12
hν →
12
248 266
8
266 quantum
8
torr coupled
8
coupled photolysis
8
ho2 radicals
8
varying concentration
8
radicals r1a
8

Similar Publications

Ink disease caused by the hemibiotrophic root pathogen Phytophthora cinnamomi (Pc) is devastating for the European chestnut (Castanea sativa), unlike Asian chestnuts and interspecific hybrids which are resistant to Pc. The role that hormone responses play for Pc resistance remains little understood, especially regarding the temporal regulation of hormone responses. We explored the relationship between changes in tree health and physiology and alterations in leaf and root phytohormones and primary and secondary metabolites during compatible and incompatible Castanea spp.

View Article and Find Full Text PDF

Developing highly efficient deep-blue multi-resonance thermal activated delayed fluorescence (MR-TADF) materials for ultra-high-definition organic light-emitting diodes (OLEDs) displays that meet the stringent BT.2020 standard remains a significant challenge. In this study, we present a strategy to achieve high-performance deep-blue MR-TADF emitters by integrating a large π-conjugated double-boron-embedded MR skeleton with strategically positioned peripheral steric hindrance groups.

View Article and Find Full Text PDF

Engineered heme proteins possess excellent biocatalytic carbene N-H insertion abilities for sustainable synthesis, and most of them have His as the Fe axial ligand. However, information on the basic reaction mechanisms is limited, and ground states of heme carbenes involved in the prior computational mechanistic studies are under debate. A comprehensive quantum chemical reaction pathway study was performed for the heme model with a His analogue as the axial ligand and carbene from the widely used precursor ethyl diazoacetate with aniline as the substrate.

View Article and Find Full Text PDF

The rational design of non-fullerene acceptors (NFAs) with both high crystallinity and photoluminescence quantum yield (PLQY) is of crucial importance for achieving high-efficiency and low-energy-loss organic solar cells (OSCs). However, increasing the crystallinity of an NFA tends to decrease its PLQY, which results in a high non-radiative energy loss in OSCs. Here we demonstrate that the crystallinity and PLQY of NFAs can be fine-tuned by asymmetrically adapting the branching position of alkyl chains on the thiophene unit of the L8-BO acceptor.

View Article and Find Full Text PDF

Colloidal quantum dots (QDs) are promising emitters for biological applications because of their excellent fluorescence, convenient surface modification, and photostability. However, the toxic cadmium composition in the state-of-the-art QDs and their inferior properties in the aqueous phase greatly restrict further use. The performance of water-soluble indium phosphide (InP) QDs lags far behind those of Cd-containing counterparts due to the lack of effective surface protection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!