Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Continually moving cilia on the surface of marine organisms provide a natural defense against biofouling. To probe the physical mechanisms underlying this antifouling behavior, we integrate the lattice Boltzmann and immersed boundary methods and undertake the first computational studies of the interactions between actuated, biomimetic cilia and a model swimmer. We find that swimmers are effectively "knocked away" from the ciliated surface through a combination of steric repulsion and locally fluctuating flows. In addition, the net flow generated by the collective motion of the entire ciliary array was important for significantly reducing the times spent by relatively slow swimmers near the surface. The results reveal that active ciliated layers can offer a means to resist a wide range of species with a single surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la402783x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!