This work reports a novel low-cost and environmental-friendly preparation strategy for core-shell structured composite microparticles and discusses its formation mechanism. Different from most conventional strategies, which involve coating or coating-like processes, this reported strategy uses irreversible solid-phase ionic diffusion in a gas-solid reaction cycle (e.g., reduction and oxidation of Fe) to gradually move the shell material from a core-and-shell material mixture microparticle to the surface. Without the need for solvent as do many conventional processes, this novel process only involves gas-solid reactions, which reduces environmental impact. To substantiate this conceived strategy, a micrometer-sized microparticle made up of a mixture of Fe2O3 and Al2O3 powders is first reduced by H2 and then oxidized by O2 over 50 cycles at 900 °C. These reactions are known to proceed mainly through the diffusion of solid-phase Fe cations. SEM and EDX analyses verify the formation of an Al2O3 core-Fe2O3 shell structure at the end of the 50 reaction cycles. If the cyclic reactions of a microparticle proceed mainly through the diffusion of gaseous-reactant-derived O anions such as the mixture of Fe2O3 and TiO2 instead of solid-phase Fe cation diffusion, no formation of the core-shell structure is observed in the resulting microparticle. These two opposing results underscore the dominating role of solid-phase ionic diffusion in the formation of the core-shell structure. A 2-D continuum diffusion model is applied to account for the inter-Fe-particle bridging and directional product layer growth phenomena during an oxidation reaction. The simulation further verifies the conceived core-shell formation strategy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la4029832 | DOI Listing |
Sci Rep
January 2025
Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guian, 550025, China.
Removal of accumulated dyes from the environment water bodies is essential to prevent further harm to humans. The development and design of new alternative nanoadsorbents that can conveniently, quickly, and efficiently improve the adsorption and removal efficiency of dyes from wastewater remains a huge challenge. An amorphous TiO with a magnetic core-shell-shell structure (FeO@PDA@a-TiO, denoted as FPaT) was constructed through a series of steps.
View Article and Find Full Text PDFChemphyschem
January 2025
Friedrich-Schiller-University Jena, Institute of Physical Chemistry, Helmholtzweg 4, 7743, Jena, GERMANY.
The design and development of particulate photocatalysts has been an attractive strategy to incorporate earth-abundant metal ions to water splitting devices. Herein, we synthesized CoFe-Prussian blue (PB) coated ZnO origami core-shell nanostructures (PB@ZnO) with different mass ratio of PB components and investigated their photocatalytic water oxidation activities in the presence of an electron scavenger. Photocatalytic experiments reveal that the integration of PB on ZnO boosts the oxygen evolution rate by a factor of ~2.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195 Warsaw, Poland.
Apart from HER2-positive, triple-negative breast cancer (TNBC) is the second most highly invasive type of breast cancer. Although TNBC does not overexpress HER2 receptors, it has been observed that EGFR protein expression is present in this specific type of tumor, making it an attractive target for immune and radiopharmaceutical treatments. In our current study, we used Pd (T = 13.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748 Garching, Germany.
The successful development of a metal-organic framework (MOF)-derived Co/CoO/C core-shell composite integrated into laser-induced graphitic (LIG) carbon electrodes for electrochemical sensing is reported. The sensors are fabricated via a direct laser scribing technique using a UV laser (355 nm wavelength) to induce the photothermolysis of rationally selected ZIF-67 into the LIG matrix. Electrochemical characterization reveals that the incorporation of the laser-scribed ZIF-67-derived composite on the electrode surface reduces the impedance more than 100 times compared with bare LIG sensors.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. Electronic address:
The inherent propensity for aggregation necessitates the use of high concentrations of protein-polysaccharide nanoparticles to achieve stable Pickering emulsions. This study employed xanthan gum (XG) to mitigate the pronounced aggregation of zein nanoparticles by structure construction, thereby enhancing the emulsifying efficiency of zein/XG (Z/XG) nanoparticles. The Z/XG nanoparticles displayed significantly enhanced dispersity, with the absolute ζ-potential increasing from 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!