The characteristics of the mid-Pliocene warm period (mPWP: 3.264-3.025 Ma BP) have been examined using geological proxies and climate models. While there is agreement between models and data, details of regional climate differ. Uncertainties in prescribed forcings and in proxy data limit the utility of the interval to understand the dynamics of a warmer than present climate or evaluate models. This uncertainty comes, in part, from the reconstruction of a time slab rather than a time slice, where forcings required by climate models can be more adequately constrained. Here, we describe the rationale and approach for identifying a time slice(s) for Pliocene environmental reconstruction. A time slice centred on 3.205 Ma BP (3.204-3.207 Ma BP) has been identified as a priority for investigation. It is a warm interval characterized by a negative benthic oxygen isotope excursion (0.21-0.23‰) centred on marine isotope stage KM5c (KM5.3). It occurred during a period of orbital forcing that was very similar to present day. Climate model simulations indicate that proxy temperature estimates are unlikely to be significantly affected by orbital forcing for at least a precession cycle centred on the time slice, with the North Atlantic potentially being an important exception.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785814 | PMC |
http://dx.doi.org/10.1098/rsta.2012.0515 | DOI Listing |
Indian J Nucl Med
November 2024
Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha Cancer Hospital & Mahamana Pandit Madan Mohan Malaviya Cancer Centre, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Varanasi, India.
Background: The introduction of positron emission tomography/computed tomography (PET/CT) has significantly advanced medical imaging. In oncology, F-fluorodeoxyglucose (F-FDG) PET/CT is particularly crucial for staging, evaluating treatment response, monitoring follow-up, and planning radiotherapy. However, in resource limiting hospitals, the availability of fluorine-labeled F-FDG limits optimal scan acquisition.
View Article and Find Full Text PDFFluids Barriers CNS
January 2025
Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA.
Background: Blood-brain barrier dysfunction is one characteristic of Alzheimer's disease (AD) and is recognized as both a cause and consequence of the pathological cascade leading to cognitive decline. The goal of this study was to assess markers for barrier dysfunction in postmortem tissue samples from research participants who were either cognitively normal individuals (CNI) or diagnosed with AD at the time of autopsy and determine to what extent these markers are associated with AD neuropathologic changes (ADNC) and cognitive impairment.
Methods: We used postmortem brain tissue and plasma samples from 19 participants: 9 CNI and 10 AD dementia patients who had come to autopsy from the University of Kentucky AD Research Center (UK-ADRC) community-based cohort; all cases with dementia had confirmed severe ADNC.
J Magn Reson Imaging
January 2025
Department of Radiology, Endeavor Health, Evanston, Illinois, USA.
Background: Luminal and hemodynamic evaluations of the cervical arteries inform the diagnosis and management of patients with cervical arterial disease.
Purpose: To demonstrate a 3D nonenhanced quantitative quiescent interval slice-selective (qQISS) magnetic resonance angiographic (MRA) strategy that provides simultaneous hemodynamic and luminal evaluation of the cervical arteries.
Study Type: Prospective.
JCI Insight
January 2025
Department of Pediatrics, Vanderbilt University Medical Center, Nashville, United States of America.
Determining how alveoli are formed and maintained is critical to understanding lung organogenesis and regeneration after injury. To study the cellular dynamics of this critical stage of lung development, we have used scanned oblique-plane illumination microscopy of living lung slices to observe alveologenesis in real time at high resolution over several days. Contrary to the prevailing notion that alveologenesis occurs by airspace subdivision via ingrowing septa, we find that alveoli form by ballooning epithelial outgrowth supported by contracting mesenchymal ring structures.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Anaesthesiology & Intensive Care Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University Munich, 81675 Munich, Germany.
: Skeletal muscle mass depletion adversely affects critically ill patient outcomes. Standardized methods for assessing muscle mass in this population are limited, particularly regarding changes during ICU stays and their implications for risk stratification. : In this secondary analysis of our prospective data registry of surgical ICU patients, we used a single slice extracted from a computed tomography scan to determine the patient's direction of absolute change in skeletal muscle mass between two different time points (-14 d to +0 d and +5 d to +21 d) during his or her critical illness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!