Recently, disordered photonic media and random textured surfaces have attracted increasing attention as strong light diffusers with broadband and wide-angle properties. We report the experimental realization of an isotropic complete photonic band gap (PBG) in a 2D disordered dielectric structure. This structure is designed by a constrained optimization method, which combines advantages of both isotropy due to disorder and controlled scattering properties due to low-density fluctuations (hyperuniformity) and uniform local topology. Our experiments use a modular design composed of Al2O3 walls and cylinders arranged in a hyperuniform disordered network. We observe a complete PBG in the microwave region, in good agreement with theoretical simulations, and show that the intrinsic isotropy of this unique class of PBG materials enables remarkable design freedom, including the realization of waveguides with arbitrary bending angles impossible in photonic crystals. This experimental verification of a complete PBG and realization of functional defects in this unique class of materials demonstrate their potential as building blocks for precise manipulation of photons in planar optical microcircuits and has implications for disordered acoustic and electronic band gap materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791749PMC
http://dx.doi.org/10.1073/pnas.1307879110DOI Listing

Publication Analysis

Top Keywords

hyperuniform disordered
8
disordered photonic
8
band gap
8
complete pbg
8
unique class
8
disordered
5
isotropic band
4
band gaps
4
gaps freeform
4
freeform waveguides
4

Similar Publications

Article Synopsis
  • The study introduces a highly efficient TiO meta-atom-based near-infrared disordered metalens inspired by bird's eye hyperuniform distribution, analyzed using the finite-difference time-domain method.
  • The disordered metalens demonstrates a remarkable focusing efficiency of 84.39% at 820 nm, showing it can produce images similarly to traditional ordered structures.
  • The findings suggest potential applications in advanced imaging, sensing, and spectroscopic technologies, including lidar, medical devices, and holography, due to comparable optical properties with periodic metalens structures across a wavelength range of 770 to 970 nm.
View Article and Find Full Text PDF

Disordered hyperuniform materials are increasingly drawing attention due to their unique physical properties, associated with global isotropy and locally broken orientational symmetry, that set them apart from traditional crystalline materials. Using a dynamic space-partitioning process, we generate disordered hyperuniform cellular structures where distinct patterns of pentagonal and heptagonal topological defects emerge within hexagonal domains. The microscopic defect dynamics are guided by local topological transitions, commonly observed in viscoelastic systems.

View Article and Find Full Text PDF

Non-equilibrium dynamic hyperuniform states.

J Phys Condens Matter

October 2024

School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.

Article Synopsis
  • Disordered hyperuniform structures are a unique form of matter characterized by reduced density fluctuations over long distances, much like crystals and quasicrystals but lacking long-range orientation.
  • Recent research has identified various non-equilibrium systems that display dynamic hyperuniform states, highlighting a new area of study that bridges non-equilibrium physics with hyperuniformity.
  • This review focuses on advancements in understanding dynamic hyperuniform states across different non-equilibrium systems, including their roles in absorbing phase transitions, non-equilibrium hyperuniform fluids, and phase separation through spinodal decomposition.
View Article and Find Full Text PDF

Media with correlated disorder display unexpected transport properties, but it is still a challenge to design structures with desired spectral features at scale. In this work, we introduce an optimal formulation of this inverse problem by means of the nonuniform fast Fourier transform, thus arriving at an algorithm capable of generating systems with arbitrary spectral properties, with a computational cost that scales O(NlogN) with system size. The method is extended to accommodate arbitrary real-space interactions, such as short-range repulsion, to simultaneously control short- and long-range correlations.

View Article and Find Full Text PDF

Stealthy and hyperuniform isotropic photonic band gap structure in 3D.

PNAS Nexus

September 2024

Advanced Technology Institute and School of Mathematics and Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom.

In photonic crystals, the propagation of light is governed by their photonic band structure, an ensemble of propagating states grouped into bands, separated by photonic band gaps. Due to discrete symmetries in spatially strictly periodic dielectric structures their photonic band structure is intrinsically anisotropic. However, for many applications, such as manufacturing artificial structural color materials or developing photonic computing devices, but also for the fundamental understanding of light-matter interactions, it is of major interest to seek materials with long range nonperiodic dielectric structures which allow the formation of photonic band gaps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!