Two kinds of dental stem cells (DSCs), dental pulp stem cells (DPSCs) and stem cells from human-exfoliated deciduous teeth (SHED), have been identified as novel populations of mesenchymal stem cells that can be induced to differentiate into osteoblasts, chondrocytes, adipocytes, and neuron-like cells in vitro. As we know, both of them originate from the neural crest, but have distinct characteristics and functions in vitro and in vivo. The regeneration potential of DSCs declines with advanced age; however, the mechanism of the impaired potential in DSCs has not been fully explored. In this study, we investigated whether declined neurogenic differentiation capacity is associated with an altered expression of Wnt signaling-related proteins in vitro. We compared stem cells isolated from human dental pulp in two age groups: the exfoliated deciduous teeth (5-12 years), and the third permanent teeth (45-50 years). We found that the expression levels of neuron markers, such as βIII-tubulin, microtubule-associated protein 2(MAP2), tyrosine hydroxylase (TH), and Nestin were lower in the DPSCs group compared with that in the SHED group; however, in supplementation with human recombinant Wnt1 in the medium, the DPSCs were prone to neural differentiation and expressed higher levels of neurogenic markers. In summary, our study demonstrated that Wnt/β-catenin signaling may play a vital role in the age-dependent neural differentiation of DSCs. Therefore, DSCs may provide an ideal source of stem cells that can further extend their therapeutic application in nerve injury and neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10571-013-9965-0DOI Listing

Publication Analysis

Top Keywords

stem cells
24
neurogenic differentiation
8
differentiation capacity
8
dental stem
8
wnt/β-catenin signaling
8
dental pulp
8
deciduous teeth
8
potential dscs
8
neural differentiation
8
stem
7

Similar Publications

Protocol for the generation of HLF+ HOXA+ human hematopoietic progenitor cells from pluripotent stem cells.

STAR Protoc

January 2025

Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA. Electronic address:

Hematopoietic stem cells (HSCs) generate blood and immune cells. Here, we present a protocol to differentiate human pluripotent stem cells (hPSCs) into hematopoietic progenitors that express the signature HSC transcription factors HLF, HOXA5, HOXA7, HOXA9, and HOXA10. hPSCs are dissociated, seeded, and then sequentially differentiated into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and hematopoietic progenitors through the sequential addition of defined, serum-free media.

View Article and Find Full Text PDF

Progenitor effect in the spleen drives early recovery via universal hematopoietic cell inflation.

Cell Rep

January 2025

Division of Cell Regulation, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Cell Engineering, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Laboratory for Stem Cell Therapy, Faculty of Medicine, Tsukuba University, Ibaraki, Japan. Electronic address:

Hematopoietic stem cells (HSCs) possess the capacity to regenerate the entire hematopoietic system. However, the precise HSC dynamics in the early post-transplantation phase remain an enigma. Clinically, the initial hematopoiesis in the post-transplantation period is critical, necessitating strategies to accelerate hematopoietic recovery.

View Article and Find Full Text PDF

ISCT MSC committee statement on the US FDA approval of allogenic bone-marrow mesenchymal stromal cells.

Cytotherapy

January 2025

Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Division of Hematology, University of Toronto, Toronto, Ontario, Canada. Electronic address:

The December 2024 US Food and Drug Administration (FDA) approval of Mesoblast's Ryoncil (remestemcel-L-rknd)-allogeneic bone marrow mesenchymal stromal cell (MSC(M)) therapy-in pediatric acute steroid-refractory graft-versus-host-disease finally ended a long-lasting drought on approved MSC clinical products in the United States. While other jurisdictions-including Europe, Japan, India, and South Korea-have marketed autologous or allogeneic MSC products, the United States has lagged in its approval. The sponsor's significant efforts and investments, working closely with the FDA addressing concerns regarding clinical efficacy and consistent MSC potency through an iterative process that spanned several years, was rewarded with this landmark approval.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!