A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Projected impacts of climate change on environmental suitability for malaria transmission in West Africa. | LitMetric

Projected impacts of climate change on environmental suitability for malaria transmission in West Africa.

Environ Health Perspect

Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

Published: October 2013

Background: Climate change is expected to affect the distribution of environmental suitability for malaria transmission by altering temperature and rainfall patterns; however, the local and global impacts of climate change on malaria transmission are uncertain.

Objective: We assessed the effect of climate change on malaria transmission in West Africa.

Methods: We coupled a detailed mechanistic hydrology and entomology model with climate projections from general circulation models (GCMs) to predict changes in vectorial capacity, an indication of the risk of human malaria infections, resulting from changes in the availability of mosquito breeding sites and temperature-dependent development rates. Because there is strong disagreement in climate predictions from different GCMs, we focused on the GCM projections that produced the best and worst conditions for malaria transmission in each zone of the study area.

Results: Simulation-based estimates suggest that in the desert fringes of the Sahara, vectorial capacity would increase under the worst-case scenario, but not enough to sustain transmission. In the transitional zone of the Sahel, climate change is predicted to decrease vectorial capacity. In the wetter regions to the south, our estimates suggest an increase in vectorial capacity under all scenarios. However, because malaria is already highly endemic among human populations in these regions, we expect that changes in malaria incidence would be small.

Conclusion: Our findings highlight the importance of rainfall in shaping the impact of climate change on malaria transmission in future climates. Even under the GCM predictions most conducive to malaria transmission, we do not expect to see a significant increase in malaria prevalence in this region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3801455PMC
http://dx.doi.org/10.1289/ehp.1206174DOI Listing

Publication Analysis

Top Keywords

malaria transmission
28
climate change
24
vectorial capacity
16
change malaria
12
malaria
11
climate
8
impacts climate
8
environmental suitability
8
suitability malaria
8
transmission
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!