Sos1 and Sos2 are ubiquitously expressed, universal Ras guanine nucleotide exchange factors (Ras-GEFs) acting in multiple signal transduction pathways activated by upstream cellular kinases. The embryonic lethality of Sos1 null mutants has hampered ascertaining the specific in vivo contributions of Sos1 and Sos2 to processes controlling adult organism survival or development of hematopoietic and nonhematopoietic organs, tissues, and cell lineages. Here, we generated a tamoxifen-inducible Sos1-null mouse strain allowing analysis of the combined disruption of Sos1 and Sos2 (Sos1/2) during adulthood. Sos1/2 double-knockout (DKO) animals died precipitously, whereas individual Sos1 and Sos2 knockout (KO) mice were perfectly viable. A reduced percentage of total bone marrow precursors occurred in single-KO animals, but a dramatic depletion of B-cell progenitors was specifically detected in Sos1/2 DKO mice. We also confirmed a dominant role of Sos1 over Sos2 in early thymocyte maturation, with almost complete thymus disappearance and dramatically higher reduction of absolute thymocyte counts in Sos1/2 DKO animals. Absolute counts of mature B and T cells in spleen and peripheral blood were unchanged in single-KO mutants, while significantly reduced in Sos1/2 DKO mice. Our data demonstrate functional redundancy between Sos1 and Sos2 for homeostasis and survival of the full organism and for development and maturation of T and B lymphocytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838185 | PMC |
http://dx.doi.org/10.1128/MCB.01026-13 | DOI Listing |
J Med Chem
January 2025
Boehringer Ingelheim RCV GmbH & Co. KG, A-1121 Vienna, Austria.
The Son of Sevenless (SOS) protein family includes two highly homologous proteins, SOS1 and SOS2, that act as guanine nucleotide exchange factors (GEFs) for RAS proteins. They catalyze the GDP-to-GTP exchange, resulting in an increase of the active GTP-bound form of RAS. Despite highly similar structures and expression patterns, SOS1 is generally accepted as the dominant RAS GEF for downstream signaling in pathological states.
View Article and Find Full Text PDFPlant Cell
January 2025
State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
Salt stress causes ion toxicity in plant cells and limits plant growth and crop productivity. Sodium ions (Na+) are transported out of the cell and sequestered in the vacuole for detoxification under salt stress. The salt excretion system is controlled by the SALT OVERLY SENSITIVE (SOS) pathway, which consists of the calcium sensors SOS3 and SOS3-LIKE CALCIUM BINDING PROTEIN 8, the protein kinase SOS2, and the plasma membrane Na+/H+ antiporter SOS1.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
December 2024
Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran.
Given the rising population and food demand, it is imperative to devise solutions to enhance plant resilience against abiotic stresses. Salinity stress impacts plant growth but also hampers plant performance and productivity. Plant hormones have emerged as a viable remedy to mitigate the detrimental effects of salinity stress on plants.
View Article and Find Full Text PDFFront Hum Neurosci
December 2024
Department of Otolaryngology-Head and Neck Surgery, Ohio State University Wexner Medical Center, Columbus, OH, United States.
Introduction: Pseudorandom balance perturbations use unpredictable disturbances of the support surface to quantify reactive postural control. The ability to quantify postural responses to a continuous multidirectional perturbation in two orthogonal dimensions of sway (e.g.
View Article and Find Full Text PDFYi Chuan
December 2024
Key laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi Uniiversity, Shihezi 832000, China.
Solute carrier 25 member 21 () serves as an oxodicarboxylate carrier, which mainly conveys 2-oxoadipate from the cytoplasm to the mitochondria a reverse exchange mechanism. Previous studies have indicated that the capacity for glucose consumption is significantly enhanced in 3T3-L1 cells overexpressing . In this study, we upregulate in 3T3-L1 cells to further probe into the downstream key metabolic genes of .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!