Microtubule-associated protein tau (MAPT) positive neuropathology is the characteristic feature of majority of frontotemporal dementia (FTD) cases, which is due to the mutations or haplotypic variations in the gene encoding MAPT (MAPT). The present study was aimed at determining the frequency of genetic variations in MAPT in a south Indian FTD cohort. The frequency of mutations were determined in 116 FTD, 8 progressive supranuclear palsy (PSP) and 3 corticobasal syndrome (CBS) patients and haplotype diversity were analyzed in a study cohort comprising 116 FTD, 8 PSP, 3 CBS, 194 other dementia groups, 78 mild cognitive impairment (MCI) and 130 cognitively normal individuals and report no pathogenic mutations in FTD/PSP/CBS or haplotypic association with disease risk in FTD or other dementia patients. These findings suggest that there may be other genetic or epigenetic factors contributing to the pathogenesis of FTD in the south Indian population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4031455 | PMC |
http://dx.doi.org/10.1016/j.neurobiolaging.2013.08.010 | DOI Listing |
F1000Res
January 2025
Faculty of Teaching and Education Sciences, Islamic University of Malang, Malang, East Java, Indonesia.
Background: Neurodegeneration due to neurotoxicity is one of the phenomena in temporal lobe epilepsy. Experimentally, hippocampal excitotoxicity process can occur due to kainic acid exposure, especially in the CA3 area. Neuronal death, astrocyte reactivity and increased calcium also occur in hippocampal excitotoxicity, but few studies have investigated immediate effect after kainic acid exposure.
View Article and Find Full Text PDFNarra J
December 2024
Animal Research Facilities, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (CRISPR/Cas9) offers a robust approach for genome manipulation, particularly in cancer therapy. Given its high expression in triple-negative breast cancer (TNBC), targeting with CRISPR/Cas9 holds promise as a therapeutic strategy. The aim of this study was to design specific single guide ribonucleic acid (sgRNA) for CRISPR/Cas9 to permanently knock out the gene, exploring its potential as a therapeutic approach in breast cancer while addressing potential off-target effects.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.).
Background: Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.
View Article and Find Full Text PDFSci China Life Sci
January 2025
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
Mitochondrial Rho-GTPase 1 (MIRO1) is an outer mitochondrial membrane protein which regulates mitochondrial transport and mitophagy in mitosis. In present study, we reported the crucial roles of MIRO1 in mammalian oocyte meiosis and its potential relationship with aging. We found that MIRO1 expressed in mouse and porcine oocytes, and its expression decreased in aged mice.
View Article and Find Full Text PDFArq Neuropsiquiatr
January 2025
Second Medical University, School of Clinical Medicine, Weifang Shandong Province, China.
Alzheimer's disease (AD), diabetic cognitive impairment (DCI), and vascular dementia (VD) are considered the most common causes of severe cognitive impairment in clinical practice. Numerous factors can influence their progression, and many studies have recently revealed that metabolic disorders play crucial roles in the progression of cognitive impairment. Mounting evidence indicate that the regulation of lipid metabolism is a major factor in maintaining brain homeostasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!