Dyadic wavelet for image coding implementation on a Xilinx MicroBlaze processor: application to neutron radiography.

Appl Radiat Isot

DIMMER Laboratory, Faculty of Sciences and Technology, University Ziane Achour, BP3117, Djelfa, Algeria; LATSI Laboratory, Blida University, BP270 Route de Soumaa, Blida, Algeria. Electronic address:

Published: December 2013

In this work, we present a mixed software/hardware implementation of 2-D signals encoder/decoder using dyadic discrete wavelet transform (DWT) based on quadrature mirror filters (QMF); using fast wavelet Mallat's algorithm. This work is designed and compiled on the embedded development kit EDK6.3i, and the synthesis software, ISE6.3i, which is available with Xilinx Virtex-IIV2MB1000 FPGA. Huffman coding scheme is used to encode the wavelet coefficients so that they can be transmitted progressively through an Ethernet TCP/IP based connection. The possible reconfiguration can be exploited to attain higher performance. The design will be integrated with the neutron radiography system that is used with the Es-Salem research reactor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2013.08.001DOI Listing

Publication Analysis

Top Keywords

neutron radiography
8
dyadic wavelet
4
wavelet image
4
image coding
4
coding implementation
4
implementation xilinx
4
xilinx microblaze
4
microblaze processor
4
processor application
4
application neutron
4

Similar Publications

Revisiting the neuroanatomy of Massetognathus pascuali (Eucynodontia: Cynognathia) from the early Late Triassic of South America using Neutron Tomography.

Naturwissenschaften

January 2025

Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Av. Roraima 1000, 97105-900, Santa Maria, RS, Brazil.

This paper analyzes the paleoneurology (cranial endocast and maxillary canal) of Massetognathus pascuali, an iconic non-mammaliaform cynodont from the early Late Triassic of South America, using Neutron Tomography. The application of neutron tomography holds the potential for uncovering more refined anatomical and quantitative data. The newly examined cranial endocast shows a forebrain with a tubular shape without an interhemispheric fissure, presence of a pineal body (with a closed parietal foramen), and a marked unossified zone.

View Article and Find Full Text PDF

Visualization of in-situ chemical flow through sand using neutron radiography.

Appl Radiat Isot

March 2025

Neutron Sciences Directorate, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA.

Chemical movement through soil is an important process in agriculture and ecology. Observing the spatial and temporal dynamics of these processes using conventional chemical ecology methods requires techniques that are destructive and/or lack resolution. Neutron radiography has the capability to allow chemical motion through sand/soil to be tracked with high spatial and temporal resolution, and we show that it allows for the motion of hydrophobic and hydrophilic chemicals to be distinguished.

View Article and Find Full Text PDF

Platform development toward ultra-intense laser-based simultaneous hard x-ray and MeV neutron multimodal radiography.

Rev Sci Instrum

December 2024

Lawrence Livermore National Laboratory, Livermore, California 94550, USA.

Ultra-intense short-pulse lasers interacting with matter are capable of generating exceptionally bright secondary radiation sources. The short pulse duration (picoseconds to nanoseconds), small source size (sub-mm), and comparable high peak flux to conventional single particle sources make them an attractive source for radiography using a combination of particle species, known as multimodal imaging. Simultaneous x-ray and MeV neutron imaging of multi-material objects can yield unique advantages for material segmentation and identification within the full sample.

View Article and Find Full Text PDF

A new type of position-sensitive detectors is gaining attention in the neutron community. They are scintillator based detectors that detect the scintillation light on an individual photon basis via an image intensifier and a fast image sensor. Their readout operates in event mode i.

View Article and Find Full Text PDF

Energy-resolved fast-neutron radiography is a powerful non-destructive technique that can be used to remotely measure the quantity and distribution of elements and isotopes in a sample. This is done by comparing the energy-dependent neutron transmission of a sample with the known cross-sections of individual isotopes. The reconstruction of the composition is possible due to the unique features (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!