Objective: β-Cells have demonstrated altered proinsulin processing after islet transplantation. We compare β-cell metabolic responses and proinsulin processing in pancreas and islet transplant recipients with respect to healthy control subjects.

Research Design And Methods: We studied 15 islet and 32 pancreas transplant recipients. Islet subjects were subdivided into insulin-requiring (IR-ISL, n = 6) and insulin-independent (II-ISL, n = 9) groups. Ten healthy subjects served as control subjects. Subjects were administered an intravenous arginine stimulation test, and insulin, C-peptide, total proinsulin, intact proinsulin, and proinsulin fragment levels were determined from serum samples. Acute insulin response (AIR) and proinsulin processing rates were calculated.

Results: We found that basal insulin and C-peptide levels were higher in the pancreas group than in all other groups. II-ISL patients had basal insulin and C-peptide levels similar to healthy control subjects. The IR-ISL group had significantly lower AIRs than all other groups. Basal processing rates were higher in the pancreas and II-ISL groups than in healthy control subjects and the IR-ISL group. After arginine stimulation, all groups had elevated processing rates, with the exception of the IR-ISL group.

Conclusions: Our data suggest that II-ISL transplant recipients can maintain basal metabolic parameters similar to healthy control subjects at the cost of a higher rate of proinsulin processing. IR-ISL transplant recipients, on the other hand, demonstrate both lower insulin response and lower basal rates of proinsulin processing even after arginine stimulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816861PMC
http://dx.doi.org/10.2337/dc12-2710DOI Listing

Publication Analysis

Top Keywords

proinsulin processing
24
transplant recipients
16
healthy control
16
control subjects
16
arginine stimulation
12
insulin c-peptide
12
processing rates
12
proinsulin
9
processing
8
recipients islet
8

Similar Publications

Role of transforming growth factor-β1 in regulating adipocyte progenitors.

Sci Rep

January 2025

Research Center for Pre-Disease Science, Faculty of Education and Research Promotion, University of Toyama, Toyama, 930-0194, Japan.

Adipose tissue (AT) metabolism involves coordinating various cells and cellular processes to regulate energy storage, release, and overall metabolic homeostasis. Therein, macrophage and its cytokine are important in controlling tissue homeostasis. Among cytokines, the role of transforming growth factor-β1 (Tgf-β1), a cytokine abundantly expressed in CD206 M2-like macrophage and correlated with the expansion of AT and fibrosis, in AT metabolism, remains unknown.

View Article and Find Full Text PDF

The study was aimed at assessing the role of the MiniMed780G system of glycemic control before, during, and after Ramadan among people with Type 1 diabetes (PwT1D). This is a single-center retrospective analysis of MiniMed780G system users aged 14 years and above whose glycemic profiles were collected from February 21 to May 20, 2023, which corresponds to the Hijri months of Sha'ban, Ramadan, and Shawwal 1444/1445. Data was collected, processed, and analyzed in the framework of the Medtronic Galaxy service of the One Hospital Clinical Service (OHCS) program in Dallah Hospital, Riyadh, Saudi Arabia.

View Article and Find Full Text PDF

Irregular illumination is a newly discovered ambient factor that affects dietary and metabolic processes. However, the effect of the modulation of long-term light exposure on appetite and metabolism remains elusive. Therefore, in this current study, we systematically investigated the effects of up to 8 weeks of exposure to red (RL), green (GL), and white light (WL) environments on appetite, food preferences, and glucose homeostasis in mice on both high-fat and low-fat dietary patterns.

View Article and Find Full Text PDF

In response to unfavourable conditions and environmental duress, follows an alternative developmental stage called the dauer larva, which is associated with various metabolic changes. Dauers can survive in harsh conditions for several months. They resume their development on returning to favourable conditions.

View Article and Find Full Text PDF

Background: Pluripotent cell-derived islet replacement therapy offers promise for treating Type 1 diabetes (T1D), but concerns about uncontrolled cell proliferation and tumorigenicity present significant safety challenges. To address the safety concern, this study aims to establish a proof-of-concept for a glucose-responsive, insulin-secreting cell line integrated with a built-in FailSafe kill-switch.

Method: We generated β cell-induced progenitor-like cells (βiPLCs) from primary mouse pancreatic β cells through interrupted reprogramming.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!