Significant efforts have been made to identify HIV-1 neutralizing antibodies because they are considered to be critical to the design of an effective HIV-1 vaccine. Although soluble HIV-1 envelope proteins can be used for this purpose, these reagents differ from membrane-anchored HIV-1 envelope spike in a number of important ways and display only a subset of its native epitopes. Consistent with this, some broadly neutralizing antibodies preferentially bind cell surface-expressed HIV-1 envelope, but not the soluble protein. Here we report the details of a new method for isolating anti-HIV-1 specific B cells based on capturing cells that produce antibodies to cell surface-expressed gp160Δc(BaL). While this method is far less efficient than sorting with soluble envelope proteins, it isolated broadly neutralizing anti-HIV-1 antibodies that bind cell surface-expressed gp160Δc(BaL) but not soluble envelope proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3854001 | PMC |
http://dx.doi.org/10.1016/j.jim.2013.09.003 | DOI Listing |
Iran J Immunol
December 2024
Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Background: Developing effective targeted treatment approaches to overcome drug resistance remains a crucial goal in cancer research. Immunotoxins have dual functionality in cancer detection and targeted therapy.
Objective: This study aimed to engineer a recombinant chimeric fusion protein by combining a nanobody-targeting domain with an exotoxin effector domain.
Talanta
November 2024
Department of Nuclear Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China. Electronic address:
Accurate diagnosis and effective antiviral strategies are critical to combat acute infection and to avoid damage to the host. Due to their restricted radiation range and energy, Auger electron emitters have shown potential as a RNA-destructing radionuclide therapy in oncology and infection. Focusing on the process of angiotensin-converting enzyme 2 (ACE2)-mediated endocytosis, Technetium-99m-labeled DX600 (Tc-DX600) was synthesized as an Auger electron vector to specifically bind to surface-expressed ACE2 proteins on 293T-hACE2 cells (293T cells stably expressing human ACE2), and Technetium-99m-loaded microvesicles (Tc-MVs) served as an antiviral tracer and effector in pseudovirus infection.
View Article and Find Full Text PDFMethods Mol Biol
November 2024
Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
Vesicular stomatitis virus (VSV)-based vaccination has shown protective efficacy against filovirus infection. Following the approval of a VSV-based vaccine against Ebola virus, there have been efforts toward applying the same platform for other filoviruses, including Marburg virus (MARV) and Sudan virus. Because these vaccines express filovirus glycoproteins, they are also a valuable tool to study filovirus entry under biosafety level 2 conditions.
View Article and Find Full Text PDFThromb Res
December 2024
Synapse Research Institute Maastricht, Kon. Emmaplein 7, 6217, KD, Maastricht, the Netherlands.
Antithrombin and tissue factor pathway inhibitor (TFPI) provide different anticoagulant mechanisms. Having established a potent anticoagulant role of cultured human umbilical vein endothelial cells in vessel-on-a-chip microfluidic models, we now investigated how these cells modulated thrombin generation under stasis through antithrombin and TFPI pathways. We observed that endothelial monolayers in 96 well-plates strongly delayed and suppressed the thrombin generation process induced by tissue factor, regardless of the presence of whole blood, platelet-rich plasma or platelet-free plasma.
View Article and Find Full Text PDFMol Cancer
October 2024
Graduate School of Biomedical Sciences and Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA.
Background: Aside from the canonical role of PDL1 as a tumour surface-expressed immune checkpoint molecule, tumour-intrinsic PDL1 signals regulate non-canonical immunopathological pathways mediating treatment resistance whose significance, mechanisms, and therapeutic targeting remain incompletely understood. Recent reports implicate tumour-intrinsic PDL1 signals in the DNA damage response (DDR), including promoting homologous recombination DNA damage repair and mRNA stability of DDR proteins, but many mechanistic details remain undefined.
Methods: We genetically depleted PDL1 from transplantable mouse and human cancer cell lines to understand consequences of tumour-intrinsic PDL1 signals in the DNA damage response.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!