Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone.

Biomaterials

Department of Orthopaedics & Traumatology, The University of Hong Kong, Pokfulam Road, Hong Kong, China; Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.

Published: December 2013

Porous biomaterials with the proper three-dimensional (3D) surface network can enhance biological functionalities especially in tissue engineering, but it has been difficult to accomplish this on an important biopolymer, polyetheretherketone (PEEK), due to its inherent chemical inertness. In this study, a 3D porous and nanostructured network with bio-functional groups is produced on PEEK by sulfonation and subsequent water immersion. Two kinds of sulfonation-treated PEEK (SPEEK) samples, SPEEK-W (water immersion and rinsing after sulfonation) and SPEEK-WA (SPEEK-W with further acetone rinsing) are prepared. The surface characteristics, in vitro cellular behavior, in vivo osseointegration, and apatite-forming ability are systematically investigated by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, cell adhesion and cell proliferation assay, real-time RT-PCR analysis, micro-CT evaluation, push-out tests, and immersion tests. SPEEK-WA induces pre-osteoblast functions including initial cell adhesion, proliferation, and osteogenic differentiation in vitro as well as substantially enhanced osseointegration and bone-implant bonding strength in vivo and apatite-forming ability. Although SPEEK-W has a similar surface morphology and chemical composition as SPEEK-WA, its cytocompatibility is inferior due to residual sulfuric acid. Our results reveal that the pre-osteoblast functions, bone growth, and apatite formation on the SPEEK surfaces are affected by many factors, including positive effects introduced by the 3D porous structure and SO3H groups as well as negative ones due to the low pH environment. Surface functionalization broadens the use of PEEK in orthopedic implants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2013.08.071DOI Listing

Publication Analysis

Top Keywords

porous nanostructured
8
nanostructured network
8
water immersion
8
apatite-forming ability
8
cell adhesion
8
pre-osteoblast functions
8
cytocompatibility osseointegration
4
osseointegration bioactivity
4
bioactivity three-dimensional
4
porous
4

Similar Publications

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.

View Article and Find Full Text PDF

To solve the energy crisis and environmental issues, it is essential to create effective and sustainable energy conversion and storage technologies. Traditional materials for energy conversion and storage however have several drawbacks, such as poor energy density and inadequate efficiency. The advantages of MOF-based materials, such as pristine MOFs, also known as porous coordination polymers, MOF composites, and their derivatives, over traditional materials, have been thoroughly investigated.

View Article and Find Full Text PDF

Porous Single-Crystalline Rare Earth Phosphates Monolith to Enhance Catalytic Activity and Durability.

Molecules

January 2025

Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.

Rare earth phosphate (XPO) is an extremely important rare earth compound. It can exhibit excellent activity and stability in catalytic applications by modifying its inherent properties. Porous single-crystalline (PSC) PrPO and SmPO with a large surface area consist of ordered lattices and disordered interconnected pores, resulting in activity similar to nanocrystals and stability resembling bulk crystals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!