The purpose of this study was to compare the efficacy between the use of bovine bone graft material and platelet-rich fibrin (PRF) mixture (test group) and bovine bone graft material and collagen membrane combination (control group) in 2-stage maxillary sinus augmentation. According to specific inclusion/exclusion criteria, patients treated between 2008 and 2012 were selected. Panoramic radiographs were used for radiologic assessments. To evaluate the relationship between sinus-graft height and each implant, the bone level (BL) was divided by implant length (IL). To evaluate the change in the height of grafted sinus, the grafted sinus floor above the lowest part of the original sinus height (GSH) was divided by the original sinus height (OSH). Samples taken during implant surgery were used for histologic and histomorphometric analyses. Twenty-five patients, 32 augmentation surgeries, and 66 one-stage implants were included in the study. No implant loss or complication was observed in either group. There were no statistical differences according to new bone formation (P = .61) and biomaterial remnant (P = .87). During the evaluation period, the test group showed statistically less change in the BL/IL ratio (P = .022). The difference of GSH/OSH ratio was found to be insignificant between groups (P = .093). It was observed that the grafted sinus covering the implant apex and sinus floor was above the original sinus height in both groups. It may be concluded from this study that both combinations can be successfully used for sinus augmentation. Further studies evaluating different graft materials and PRF combinations in the early phases of healing would be beneficial.

Download full-text PDF

Source
http://dx.doi.org/10.1563/AAID-JOI-D-13-00129DOI Listing

Publication Analysis

Top Keywords

bovine bone
16
bone graft
16
sinus augmentation
12
grafted sinus
12
original sinus
12
sinus height
12
sinus
10
platelet-rich fibrin
8
collagen membrane
8
graft material
8

Similar Publications

Addressing the high cost and long cycle associated with the multistep digital restoration process involving 3D printing technology, we proposed the 3D pen as an innovative strategy for rapid bone repair. Capitalizing on the low melting point characteristic of polycaprolactone (PCL), we introduced, for the first time, the novel concept of directly constructing scaffolds at bone defect sites using 3D pens. In this in vitro study, we meticulously evaluated both the mechanical and biological properties of 3D pen-printed PCL scaffolds with six distinct textures: unidirectional (UNI) (0°, 45°, 90°), bidirectional (BID) (-45°/45°, 0°/90°), and concentric (CON).

View Article and Find Full Text PDF

Bovine bone-based activated carbon composite containing nanomagnetite as a catalyst for photo-Fenton reactions.

Environ Sci Pollut Res Int

December 2024

Laboratório de Cerâmica Técnica (CerTec), Grupo de Biomateriais E Materiais Nanoestruturados, Programa de Pós-Graduação Em Ciência E Engenharia de Materiais (PPGCEM), Universidade Do Extremo Sul Catarinense, Criciúma, SC, CEP 88806-000, Brazil.

Magnetic composites (MC) prepared from magnetite nanoparticles (MNP) and activated carbon from bovine bone (AC) in different proportions (75/25, 50/50, and 25/75) were used as catalysts in the photo-Fenton process to degrade methylene blue (MB) in aqueous solution. The materials were prepared by the citrate-nitrate sol-gel synthesis method and used as catalysts in the photo-Fenton process. The photocatalytic tests were performed in a cylindrical reactor with a 4.

View Article and Find Full Text PDF

This study was performed to evaluate the regenerative capabilities of levan hydrogels when combined with conventional bone graft materials (Bio-Oss®) in guided bone regeneration (GBR). With the growing interest in the application of levan polysaccharide for regenerative purposes over the last decade, a noticeable gap in in-vivo validations remains. This research therefore fills this gap by utilizing the cytocompatibility and cell proliferation potential of levan hydrogels and marks a preliminary effort in its use in combination with Bio-Oss® for bone regeneration, which was examined both in-vitro and in-vivo for the first time.

View Article and Find Full Text PDF

Elastic fibers of the internal and external elastic laminae maintain blood vessel shapes. Impairment of smooth muscle cell function leads to vascular disease development. F-box and WD-40 domain-containing protein 2 (FBXW2) is associated with elastic fibers and osteocalcin expression for bone regeneration in the periosteum.

View Article and Find Full Text PDF

This study investigated the effect of platelet-rich fibrin (PRF) on bone healing around implants placed in elevated sinus cavities. Forty New Zealand albino rabbits were divided into eight groups, based on the time of sacrifice (14 or 40 days) and the material used: blood clot (control), hydroxyapatite (HA) from bovine bone, HA combined with PRF, and PRF alone. Each group consisted of five animals (n = 5).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!